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INTRODUCTION

The change of the atomic structure at the Si-

SiO2 interface leaves additional electronic states,

energetically aligned closer to the Si conduction

band, in the first 2 − 6 Å of the SiO2 away from

the interface [1], [2], [3], [4]. This implies a gradual

transition of the band-gap at the SiO2 side, as shown

on Fig. 1 from [2]. Recently, we studied the impact

of this transition on the metal-oxide-semiconductor

(MOS) inversion layer characteristics [5], simu-

lating linear transition of the band-gap, similarly

to earlier studies [6], [7]. For the first time here,

MOS inversion layer quantisation, capacitance and

tunnelling characteristics are analysed for a realistic

band-gap transition, derived from first principles

simulations of the Si-SiO2 interface.

SIMULATION APPROACH AND RESULTS

This study is based on a 1-D self-consistent

solution of the Poisson and Schrödinger equations,

using a modified version of Schred 2.0 solver [8],

as in [9] and [5]. Further modifications allow us

to incorporate the interface band-gap profile from

Fig. 1. We have re-scaled the values extracted

from Fig. 1, since this profile results from density-

functional theory, which is known to underestimate

the band-gap, compared to experimentally observed

values [4]. Since non-linear features of the transition

are preserved, we confront the results obtained from

this transition profile, with simulations of a linearly

graded band-gap transition in the range of 0.2 −

0.6 nm. The simulated MOS structures has a SiO2

dielectric of thickness in the range of 1.0−1.8 nm,

and a p-Si (100) substrate, uniformly doped to

2 × 10
18 cm−3. Metal gate with a 4.1 V work

function is assumed, to avoid poly-Si depletion.

Conduction band profile and electron density dis-

tribution are compared on Fig. 2, for three different

interface band-gap transition profiles. Although the

full band-gap for the realistic profile extracted from

Fig. 1 develops in 0.5 nm, the electrostatic effects

correspond to a linear transition of 0.6 nm. The

effectively wider potential well corresponding to the

realistic profile lowers the ground states for both 2-

fold and 4-fold degenerate Si valleys, as shown on

Fig. 3, and leads to more dramatic redistribution of

carriers (lower graphs on Fig. 3). Figure 4 shows

an increase of gate capacitance due to the band-

gap transition. The enhancement is strongest for

the realistic profile, due to the strongest penetration

of the corresponding wave-functions (lower part of

Fig. 2). Similarly, tunnelling is mostly increased for

the realistic profile, due to the thinnest tunnelling

barrier for the energy range of interest - Fig. 4.

Figures 5 and 6 show the relative effect of band-

gap transition on quantisation, tunnelling and gate

capacitance. The isolated points show where the

realistic profile stands with respect to the trend of

increasing the transition width of a linear profile.

We conclude that not so much the total width,

but the exact profile of the band-gap transition in the

first few Å is deterministic for the impact of Si-SiO2

transition on MOS inversion layer characteristics.
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Fig. 1. Non-abrupt band-gap transition at the Si-SiO2 interface

(top), corresponding to the ab-initio simulated atomic structure

of the interface (bottom), from Kaneta et al. [2].
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Fig. 2. Conduction band profile and electron density (upper)

for three different band profiles at the interface - abrupt, linearly

graded, and the band profile extracted from Fig. 1. Normalised

wave functions (modulus) corresponding to the lowest sub-

bands in the 2- and 4-fold valleys (lower).
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Fig. 3. Sub-band energy and sub-band occupancy (percentage

of the total inversion charge density) dependence on gate

voltage, for the three different interface band-gap transition

profiles, as on Fig. 2, at a given oxide thickness tOX .
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Fig. 4. C −V (left) and JG −V (right) characteristics of the

structure, for the three different band-gap transition profiles, as

on Fig. 2, at a given oxide thickness tOX .

 0.2

 0.3

 0  0.2  0.4  0.6

 20

 40

 60

 80

E
n
er

g
y
 (

eV
)

O
cc

u
p
an

cy
 (

%
)

Transition width (nm)

Ni = 5x10
12

 cm
-2

E0
2f

E0
4f

n0
4f

/Ni

n0
2f

/Ni

 1

 10

 100

 0  0.2  0.4  0.6

J Gg
r
/J

Gab
r

Transition width (nm)

Ni = 5x10
12

 cm
-3

total JG
2-f SB only
4-f SB only

Fig. 5. Sub-band energy and occupancy (left), and direct

tunnelling current (right) dependence on transition width for

a constant inversion charge, Ni. The non-connected points

correspond to the band-gap transition profile from Fig. 1. These

resutls are independent of the simulated oxide thickness.
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Fig. 6. Gate capacitance relative difference, with respect to

abrupt interface, for various linear transition widths and for the

profile from Fig. 1, at a given oxide thickness, tOX .
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