WATER ADSORPTION ON O(2X2)/Ru(0001)

Pepa Cabrera-Sanfelix¹, <u>Daniel Sánchez-^{Portal2}</u>, Aitor Mugarza^{3,4}, Tomoko K. Shimizu^{3,5}, Miquel Salmeron,^{3,5}, and Andrés Arnau^{2,6}
¹ Donostia International Physics Center (DIPC), Manuel de Lardizabal 4, San Sebastian, Spain.
² Unidad de Física de Materiales, Centro Mixto CSIC-UPV, Manuel de Lardizabal 4, San Sebastian 20018, Spain
³ Materials Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley CA 94720/USA
⁴ Institut de Ciencia de Materials de Barcelona, CSIC, Bellaterra, Spain 08193
⁵ Department of Materials Science and Engineering, University of California Berkeley, CA94709. USA
⁶ Departamento de Física de Materiales UPV/EHU, Facultad de Química, Apartado 1072, San Sebastián 20080, Spain sqbsapod@sc.ehu.es

We present a combined theoretical and experimental study of water adsorption on Ru(0001) pre-covered with 0.25 monolayers (ML) of oxygen forming a (2x2) structure. Several structures were obtained by means of Density Functional Theory calculations for which STM simulations were performed and compared with experimental data.¹ Up to 0.25 monolayers the molecules bind to the exposed Ru atoms of the 2x2 unit cell via the lone pair orbitals. The molecular plane is almost parallel to the surface with its H atoms pointing towards the O atoms of the 2x2 unit cell with which they form H-bonds. The adsorption energy of this configuration is approximately 616 meV, which is 220 meV more stable than on the clean surface in a similar configuration.^{2,3} This is due to the additional H-bonds with the O atoms of the unit cell. The energy shows only a weak dependence on water coverage, with a shallow minimum for a row structure at 0.125 ML. This is consistent with the STM experiments that show a tendency of the molecules to form rows at intermediate coverage. Our calculations also suggest the possible formation of water dimers near 0.25 ML.

References:

[1] Cabrera-Sanfelix, P.; Sanchez-Portal, D.; Mugarza, A.; Shimizu, T. K.; Salmeron, M.; Arnau, A. *Physical Review B. submitted* 2007.

[2] Michaelides, A.; Alavi, A.; King, D. A. Journal of the American Chemical Society 2003, 125, 2746-2755.

[3] Feibelman, P. J. Science 2002, 295, 99-102.