ONSET OF POSITIVE EXCHANGE BIAS IN NANOSTRUCTURED THIN FILMS

R. $Morales^{1}$, Z.-P. Li^{2} , Ivan K. Schuller²

¹Departamento de Fisica, Universidad de Oviedo, c/ Calvo Sotelo s/n, Oviedo 33007, Spain ²Department of Physics, University of California at San Diego, La Jolla, California 92093, USA

rma@uniovi.es

Exchange bias (EB) phenomenon appears in ferromagnetic/antiferromagnetic (FM/AF) materials in intimate contact and below the Néel temperature of the AF (T_N) [1,2]. The exchange interaction between FM and AF spins at the interface leads to a shift of the hysteresis loop along the magnetic field axis known as exchange bias field (H_{EB}).

The sign of $H_{\rm EB}$ depends on the magnetic history of the cooling process across $T_{\rm N}$. Most of the EB systems exhibit only negative $H_{\rm EB}$ at positive cooling fields ($H_{\rm FC}$), independently of the magnitude of $H_{\rm FC}$. However, there are few magnetic systems, like FeF₂/FM bilayers, that show positive $H_{\rm EB}$ at high $H_{\rm FC}$. These systems also show negative $H_{\rm EB}$ at low $H_{\rm FC}$, as regular EB films. The transition between negative and positive EB regimes depends on the crystalline quality of the AF. In epitaxial FeF₂ it has been observed that it occurs through a *bidomain* state [3], where AF domains with opposite pinned uncompensated moments coexist below $T_{\rm N}$. This lateral structure yields double hysteresis loops (DHL), i.e. two subloops with the same absolute value of $H_{\rm EB}$ and opposite sign [4]. The ratio between both positive and negative subloops depends on the magnitude of $H_{\rm FC}$ [3].

In this work we report about the minimum H_{FC} necessary for fully positive EB in both patterned and unpatterned FeF₂/Ni bilayers. The onset of DHL and positive EB was investigated in FM dotted magnetic nanostructures as function of the dot size and compared to the value of continuous films. Fig. 1 shows a cross section sketch of patterned AF/FM bilayers (a) and an atomic force microscopy (AFM) image of the array (b). Magneto-optical measurements of hysteresis loops demonstrate that the smaller the dot size the lower the magnitude of H_{FC} necessary for positive H_{EB} . This effect has been related to the correlation of FM and AF domain sizes, which can qualitatively explains the results.

Work supported by US-DOE and European Marie-Curie-OIF.

References:

- [1] W. H. Meiklejohn, and C. P. Bean, Phys. Rev. 102 (1956) 1413
- [2] J. Nogués, and Ivan. K. Schuller, J. Magn. Magn. Mater. 192 (1999) 203
- [3] O. Petracic et al. Appl. Phys. Lett. 87 (2005) 222509
- [4] I. V. Roshchin et al. Europhys. Lett. **71** (2005) 297

Figures:

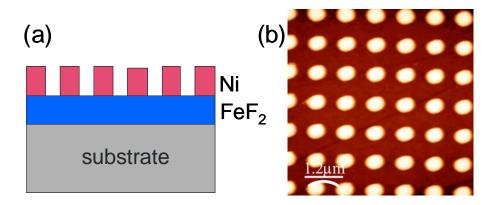


Fig. 1. (a) Cross section sketch of FM dotted FeF_2/Ni bilayers. (b) AFM image of FeF_2/Ni nanostructures.