MAGNETO-VOLUME ANOMALIES AND MAGNETOCALORIC EFFECT ON BALL-MILLING NANOSTRUCTURED Pr_2Fe_{17} COMPOUNDS

P. Álvarez¹, J. L. Sánchez Llamazares¹, P. Gorría¹, J. A. Blanco¹, J. Sánchez Marcos²

Departamento de Física, Universidad de Oviedo, Calvo Sotelo, s/n, 33007 Oviedo, Spain.

Institut Laue Langevin, 38100, Grenoble, France.

alvarezpablo.uo@uniovi.es

Intermetallic Pr₂Fe₁₇ alloy crystallizes in the rhombohedral Th₂Zn₁₇-type crystal structure (space group R3m), showing a ferromagnetic behaviour with a high spontaneous magnetization below its Curie Temperature ($T_C = 285 \text{ K}$) [1]. The interest on this compound has been recently renewed due to its relatively high magnetocaloric effect in a broad temperature interval around room temperature, and a relative cooling power even higher than the reported value for Gd₅(Si_{1-x}Ge_x)₄. Strong magneto-volumic anomalies are also present, such as anomalous thermal expansion. As the magnetic behaviour of this alloy is determinated by exchange interactions between nearestneighbours Fe atoms [2], changes in the structure can alter its magnetic properties. For this reason, we use high-energy ball milling in order to nanostructurate it with the aim of study the crystalline structure and the magnetic behaviour before and after milling. From the analysis of both X-Ray (K_{\square} radiation Cu, $\square = 1.5418$ Å) and neutron at D2B (ILL) high resolution powder diffraction patterns, we conclude that after 10 hours milling (BM-10h) the almost single rombohedrical 2:17 phase persist with a slightly increase of cell parameters (less than 0.05%) and no evidence of microstrain due to the severe mechanical treatment, as it appears in other Fe-based compounds [3]. In addition, there is an important decrease of peak intensity and a huge broadening of the peak width after milling, which come from the formation of nanonoparticles with average crystalline grain size ≈ 20 nm. TEM images confirm that milled sample is nanostructurated with a grain size in the range 7 - 50 nm. An analysis of SEM images shows that these nanoparticles are forming micronic agglomerates with sizes of about $0.5 - 5.0 \, \Box m$.

Magnetization as a function of temperature, measured under an applied magnetic field $\mu_0H=20$ mT, shows a well-defined T_C at $286\pm1K$ in the case of bulk sample, whereas for the milled one is not possible to determine accurately a T_C , due to the fact that ferromagnetic to paramagnetic transition becomes broad. Moreover, this transition temperature shifts toward larger temperatures (305 ± 15 K). Magnetocaloric effect, i.e. the variation of magnetic entropy with magnetic field and temperature, is evaluated from the M(H,T) curves. A decrease of the peak of $|\Box S_M|$ from 6.3 to 4.5 J kg⁻¹ K⁻¹ under an applied magnetic field $\mu_0H=5$ T for both bulk and ball milled samples respectively is observed. Nevertheless, a broadening on the $|\Box S_M(T)|$ curve entails an increase of the RCP value, defined as the product of $|\Box S_M|$ peak value and the full width at half maximum.

Temperature dependence of cell volume is obtained from neutron thermo-diffraction experiments at D1B (ILL) in the temperature range 10 - 450 K. In Both samples the volume has a minimum near T_C , which is deeper and sharper in the case of bulk sample. Cell volume at 300 K (where milling process takes place) and 6c-6c Fe-Fe interatomic distances are greater in the milled one, which favours ferromagnetism and therefore increase the Curie temperature in the BM-10h sample.

References:

- [1] D. Givord et al., IEEE Trans. Mag., MAG-7 (1971) 657.
- [2] M.S. Ben Kraiema et al., J. Magn. Magn. Mater. **256** (2003), 262.
- [3] P. Gorria et al., J. Magn. Magn. Mater. **294** (2005), 159.

Figures:

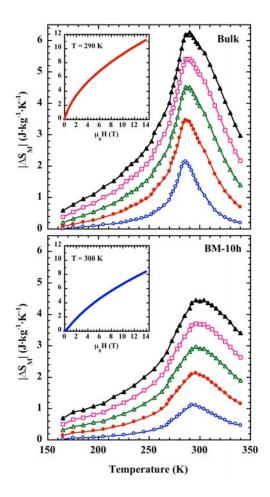


Fig. 1: Magnetic entropy change $|\Delta S_M|$ of Bulk (upper panel) and BM-10h (lower panel) samples under applied magnetic fields of 1 T (open circles), 2 T (solid circles), 3 T (open triangles), 4 T (open squares) and 5 T (solid triangles). The insets show $|\Delta S_M|$ vs. $\mu_0 H$ up to 14 T for each material