GRAPHENE NANOCONSTRICTION AS A SINGLE-LEVEL QUANTUM DOT

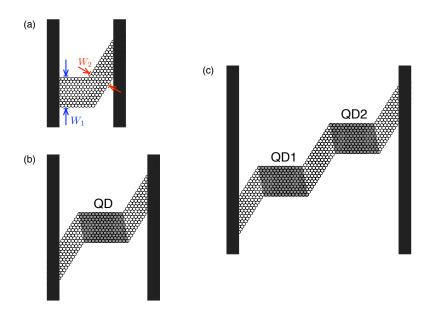
A. Rycerz^{1,2,*}, J. Wurm², M. Wimmer², I. Adagideli², and K. Richter²

¹Marian Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, PL–30059 Kraków, Poland

²Institut für Theoretische Physik, Universität Regensburg, D–93040, Germany *Contact e-mail: Adam.Rycerz@physik.uni-regensburg.de

Quantum dot having a single relevant electronic level, that shows only spin degeneracy, is widely considered as a key ingredient for solid-state quantum information processing. Recently, such a single-level quantum dot (SQD) was proposed to be realized in graphene constrictions with predominantly *armchair* edges [1, 2] in order to exploit the superior spin coherence expected in carbon nanostructures.

This is the theoretical proposal to build SQD by using graphene nanoconstriction with *zigzag* edges only. The work was motivated by recent experiment by Li *et al.* [3] reporting fabrication of a 120-degree graphene kink with zigzag edges, and partly by an analytical finding by Akhmerov and Beenakker [4] that the zigzag-boundary condition applies generically to the terminated honeycomb lattice of any crystallographic orientation of the edge, except the case of a perfect armchair edge. Therefore, the armchair-boundary condition constitutes an academic, experimentally inaccessible situation. On the other hand, in the existing proposals to build SQD in graphene [1, 2] the sections of an insulating-armchair nanoribbon are used to trap an electron in the device [5].


Earlier, we have shown [6] using tight-binding calculations, that the *asymmetric* kink consists of two nanoribbons with zigzag edges rotated to form a 120-degree kink, blocks the lowest propagating mode. Here, we first briefly discuss the evolutions of the kink conductance with its geometrical parameters W_1 and W_2 to show the blocking mechanism works effectively except from the *symmetric* case $W_1 \approx W_2$, when the resonant tunneling may appear. The analysis is extended to the case of nonzero edge magnetization, which may appear in nanoribbons with zigzag edges [7].

Then, the two kinks are joined together to form a *double kink*, which shows narrow conductance peaks associated with a charge density localized in a central section. The decay rates of such localized states comparable as of their counterparts in the system of Ref. [2]. This indicates each kink traps an electron as effectively as an insulating-armchair nanoribbon of the similar size and, subsequently, the double kink operates as SQD in graphene. We also consider a *double quantum dot* (DQD), formed in nanostructure containing *four* kinks, to illustrate the scalability of the proposed device. The work is complemented with estimation of the Coulomb-interaction integrals for the localized states, and of the subsequent effective parameters, like the Heisenberg-type exchange and the Kondo couplings in different situations.

References:

- [1] B. Trauzettel, D.V. Bulaev, D. Loss, and G. Burkard, Nature Physics 3 (2007) 192.
- [2] Z.F. Wang, Q.W. Shi, Q. Li, X. Wang, and J.G. Hou, Appl. Phys. Lett. 91 (2007) 053109.
- [3] X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Science 319 (2008) 1229.
- [4] A.R. Akhmerov, C.W.J. Beenakker, Phys. Rev. B 77 (2008) 085423.
- [5] Dirac fermions cannot be confined by solely using the potential barier due to Klein paradox, see M.I. Katsnelson, K.S. Novoselov, and A.K. Geim, *Nature Physics* **2** (2006) 620.
- [6] A. Rycerz, phys. stat. sol. (a) 205 (2008) 1281.
- [7] M. Wimmer, I. Adagideli, S. Berber, D. Tomanek, and K. Richter, *Phys. Rev. Lett.* **100** (2008) 177207.

Figures:

Graphene nanoconstrictions with zigzag edges studied in the present work. 120-degree kink (a) blocks the current at low bias for $W_1 \neq W_2$. Double kink (b) traps an electron in the *shadow* area and thus operates as a single-level quantum dot, whereas constriction with four kinks (c) operates as a double quantum dot. Each of the devices is connected to heavily-doped graphene leads marked with the dark bars.