Magnetocapacitance in Fe3O4@SiO2 nanocomposite

S. Yáñez-Vilar¹ , M. Sánchez-Andújar¹ , S. Castro-García¹ , J. Rivas² , M. A. Señarís-Rodríguez¹ ¹Dept. Química Fundamental, Univ. da Coruña, A Zapateira s/n, 15071 A Coruña, España ²Dept. Física Aplicada, Univ. de Santiago de Compostela, 15781 Santiago de Compostela,

España

syanez@udc.es

Nowadays, there is a growging interest in materials in which their dielectric constant can be modified by the application of a magnetic field [1]. Unluckily, relatively few compounds display such a magnetocapacitive (MC) behavior and many efforts have been devoted in the last years to search for new alternatives.

Recently, several authors have reported magnetocapacitive response in magnetic nanoparticles systems such as $ε$ -Fe₂O₃ [2], MnFe₂O₄ and γ-Fe₂O₃ [3]. Therefore, nanoparticle technologies open a new route to obtain materials with such a behavior.

In this contribution, we study the influence of the $SiO₂$ coating on the dielectric and magnetocapacitive response of one of the most studied magnetic compounds among the iron oxides: the magnetite, $Fe₃O₄$. This compound is a very well known material that shows a ferrimagnetic transition around $T_C \sim 850$ K and nearly full spin polarization at room temperature [4], both properties of great potential for applications in giant magnetoelectronic and spin-valve devices.

For this purpose, the Fe₃O₄ nanoparticles ($\phi \sim 20$ nm) that constitute the cores were prepared following the solvothermal method described by Pinna et al. [5], and the $Fe₃O₄@SiO₂ core$ shell nanocomposites (Figure 1) were synthesized using the Stöber method [6]. The obtained samples were morphologically and structurally characterized by means of X-ray powder diffraction, scanning electron microscopy and transmission electron microscopy. Its complex dielectric permittivity, $\varepsilon_r = \varepsilon_r \dot{-i} \varepsilon_r$, was measured as a function of frequency (20 $\leq v$ (Hz) $\leq 10^6$) and temperature (90 \leq T (K) \leq 300). Dielectric measurements as a function of a magnetic field, $H_{\text{max}} = 0.5$ T, were aditionally performed in the temperature range $200 \le T(K) \le 300$.

The frequency dependent behavior of the two materials are compared in Figure 2. As it can be seen the dielectric constant shows higher values in the case of the $Fe₃O₄$ nanoparticles, even if those of the core-shell nanocomposite do not decrease so markedly with frequency. Very interestingly in the coated sample the loss tangent has decreased as compared to the uncoated sample by at least a factor of 10 (Figure 3).

Moreover, a magnetocapacitive (MC) response is observed at room temperature in the $Fe₃O₄$ nanoparticles, MC= $[\epsilon'_{r(H=0.5T)}-\epsilon'_{r(H=0T)}]/\epsilon'_{r(H=0T)}$ 6 %, that slighly decreases, but maintains values ~ 1 % in the case of the Fe₃O₄@SiO₂ nanocomposite.

Acknowledgments:

The authors are grateful for financial support from Xunta de Galicia under project PGIDIT06PXB103298PR and from Consolider-Ingenio 2010 under poject CSD2006-00012. S. Yáñez-Vilar want to thank to MEC of Spain for her FPI fellowship and M. Sánchez-Andújar acknowledges to Xunta de Galicia for support under program Parga Pondal.

References:

[1] G. Catalan, *Appl. Phys. Lett*. **88** (2006) 102902.

[2] M. Gith, C. Frontera, A.Roig, J. Fontcuberta, E. Molins, *Nanotechnology* **17** (2006) 687.

[3] G. Lawes, R. Tackett, O. Masala, B. Adhikary, R. Naik, R. Seshadri, *Appl. Phys. Lett*. **88** (2006) 687.

[4] J. M. D. Coey, A. E. Berkowitz, Ll. Balcells, F. F. Putris, F. T. Parker, *Appl. Phys. Lett.* **72** (1998) 734.

[5] N. Pinna, S. Grancharow, P. Beato, P. Bonville, M. Antonetti, M. Niederberger, *Chem. Mater*. **17** (2005) 3044.

[6] W. Stöber, A.Fink, E. Bohn, *J. Colloid Interface Sci.* **26** (1968) 62.

Figure 1. TEM micrographs of: (a) the $Fe₃O₄$ nanoparticles, (b) the $Fe₃O₄@SiO₂ core-shell$ composite (thickness of the $SiO₂$ nanocoating \sim 6 nm).

Figure 2. Frequency (v) dependence of the dielectric constant (ϵ'_r) for: (a) Fe₃O₄ nanoparticles and (b) $Fe₃O₄@SiO₂$ nanocomposite, measured at T= 295 K in the absence and presence of magnetic field.

Inset on Figures 2a and 2b: Magnetocapacitive effect, where $MC = [\varepsilon'_{r(H=0.5T)} - \varepsilon'_{r(H=0T)}]/\varepsilon'_{r(H=0T)}$.

Figure 3. Plot of the loss tangent (tan δ) versus frequency (20 \leq v (Hz) \leq 10⁶) corresponding to both the Fe₃O₄ nanoparticles and the Fe₃O₄@SiO₂ nanocomposite measured at T= 300 K.