Time-dependent electron driven tunneling
phenomena for multipurpose terahertz applications:

Self consistent computation of conduction and
displacement current in mesoscopic systems

A.Alarcon and X.Oriols

Universitat Autonoma de Barcelona - Spain
E.mail: alfonso.alarcon@uab.es

Oviedo, Spain September 1-5, 2008



1. Theoretical development:

1.1.- Introduction:
1.1.1- From macroelectronic to nanoelectronic. THZ Gap
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1.1.- From macroelectronic to nanoelectronic. THZ Gap
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1.2.-Total (conduction + displacement) current conservation

C> Total current 1n high frequency electron devices:

1) =J.(rt) + e(r)ﬁEg’”
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Conduction Displacement

[Ya. M. Blanter and M. Buttiker, Phys. Rep. (2000)]

1. |V (g(r) E(r t)) = p(1,1) ¢=m!* Maxwell (Poisson) equation
I : , (electron-electron interaction)

2. | Many-particle Schrodinger equation
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1. Theoretical development:

1.2- Time-dependent self-consistent solution of the Poisson and many-particle
Schrodinger equations:

1.2.1- Quantum trajectories with electron-electron interaction
1.2.2.- Current in terms of the Ramo-Shockley theorem.



2.1.- Quantum trajectories with electron-electron interaction

The problem...
» | Many-particle (Coulomb interaction) Schrodinger equation

d (r,.., Iy ,t) Many particle wave function

GO (oS O 3 T P I
17 =y —V. +U(r,...r,,0) rdT,.., It

Practical solution is inaccessible for more than very few electrons

Numerical viability 1 eq N-Dim: N=100 electrons, L=100nm length (with Ax=0.1 nm)

The solution...

Electron-electron approximations in the literature:
- Fermi liquid (no Coulomb interaction)
-Perturvative (Green-function) treatment

-Density Functional theory
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2.1.- Quantum trajectories with electron-electron interaction

The solution...

> | New approximation to simplifying the evaluation of many-particle
Schrodinger equation.

= 2
m%:{—f V2 +Ua<@,F?a[t],t>+6a<@,ﬁa[t],t)+i-aa<ra,F?a[t],t>}wa<n,t>
m a

Numerical viability N-egs 1-Dim: N=100 electrons, L=100nm length (with Ax=0.1 nm)
n° of variables = 3-1000-N = 300 000 variables

The self-consistent coupling between the electron dynamics obtained from
the last equation and the Coulomb potential (obtained from 3D Poisson
solver) is achieved by using Bohm trajectories.
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2.2.- Current in terms of the Ramo-Shockley theorem

Ramo-Shockley theorem with Bohm ",
trajectories in volume Q and total surface S~ S, |

|.(t) = F? )+ Fie (1) W Source
Conduction current

""""
density
o
t"‘
\\\

ro(t) = '[F(r)d r S, L

/v Potential scalar

F(F)=-V®(F)

O(F)=1; Fe$S
[X.Oriols, A.Alarcon, et al. Phy. Rev. B, 2005] OF)=0 : 7
[A.Alarcon, X.Oriols, et al. JISTAT, 2008 (Submitted)] 8/14



2. THz applications:

2.1.- Driven Tunneling Devices (DTD)



3.

> |

>|

- Driven Tunneling Devices (DTD)

DTD geometry
Field effect transistor with three terminals:
double gate, drain and source. T =t6rm VeV Cete
Inside active region, a double barrier and a B '
quantum well Source (S)

DTD operation

The output current (from a source

Transr_nission
line

to the drain) is controlled by the Lo y
gate voltage. i Gite v () N AGaas
Coupling non-stationary (THz) quantum © = InGals
transport with electromagnetism. | | Gabs

The density of states inside the active region is designed “by hand” (modifying the
structure geometry).

[DTD was patented in the year 2005]
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2. THz applications:

2.2.- Numerical DTD results:
2.2.1.- Rectifier
2.2.2.- Harmonic Generator
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4.2.- DTD Applications: THz harmonic generator
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5. Conclusions

» | Theoretical development:

> | We have presented a novel approach for the self-consistent simulation
of the time-dependent total current at the range of THz.

> | The self-consistent solution of the 3D Poisson and Schrodinger
equations are achieved using Bohm trajectories.

> | Computation of the time-dependent total current using quantum
version of the Ramo-Shockley theorem.

» | THz applications:

» | Driven Tunneling Devices: Geometry and Operation.

> | This numerical approach is applied for the computing of tunneling
currents in two different DTD configuration: Rectifier and a harmonic
generator.
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