Nickel nanoparticles deposited into an activated porous carbon: synthesis, microstructure and magnetic properties

Pedro Gorria

Departamento de Física Universidad de Oviedo

- Mª Paz Fernández-García & Jesús A. Blanco (Departamento de Física, Univ. Oviedo, Spain)

- Marta Sevilla & Antonio B. Fuertes (Instituto Nacional del Carbón, CSIC, Oviedo, Spain)

Introduction

- ✓ Activated carbons (AC) are extensively used for adsorption and catalytic purposes, mainly due to their outstanding efficiency together with a wide availability and low cost.
- ✓ They are exploited in liquid phase for a number of applications, such as, catalyst or catalytic supports, to remove contaminants or for recovering specific products.
- ✓ If the selective manipulation of valuable substances associated with AC is pursued, magnetic separation could be the most effective strategy for achieving this task.
- ✓ We present a new and easy-to-follow synthesis procedure to prepare magnetically separable porous carbons, in which Nickel nanoparticles have been deposited.

AIM: Study the correlation between microstructure and magnetic properties

SYNTHESIS PROCEDURE AND POWDER MORPHOLOGY

- ♦ the starting material (matrix) is a commercial and low-cost AC with a large BET surface area, (2350 m² g⁻¹) and a high pore volume (1.47 cm³ g⁻¹).
- **♦** the AC is impregnated with an aqueous solution containing sucrose and nickel nitrate
- \diamond a subsequent heat-treatment results in the formation of Nickel nanoparticles dispersed along the porous AC (the amount of Ni in the sample is \approx 16 wt.%)
- ♦ the addition of sucrose favours protection against acid corrosion
- ♦ after acid attack (HCl) the final amount of Ni in the sample is \approx 12 wt.%

SEM Quasi-spherical powder grains $1-50~\mu m$

The BET surface area (BET N2) is a measurement of the extent of the pore surface developed within the matrix of the activated carbon using nitrogen (N2). Used as a primary indicator of the activity level, based on the principle that the greater the surface area, the higher the number of adsorptive sites available.

CRYSTAL STRUCTURE & MICROSTRUCTURE

TEM

Quasi-spherical and well-dispersed nanoparticles Mean size: $<\tau>_{TEM} = 16(1)$ nm

Bragg reflections corresponding to FCC-Ni Cell parameter: a = 3.525 Å (pure Ni, a = 3.532 Å)

Mean size: $\langle \tau \rangle_{XRD} = 18(1)$ nm

Nickel distribution obtained by energy dispersive spectrometry in the section of a particle. The noisy line represents the nickel content. The continuous line represents the selected line for analysis and the discontinuous line represents saturation of the signal. Bar length = $20 \mu m$.

MAGNETIC PROPERTIES: 1. CONDITIONS FOR SPM

for T > 200 K M is an universal function of $\mu_0 H/T$

Reversible M(H) (no hysteresis)

Fit to a Langevin function

d (nm)	M _s (Am ² /kg-Ni)
13(1)	30(2)

MAGNETIC PROPERTIES: 2. M vs T (ZFC-FC behaviour)

Fit to a Stoner - Wohlfarth model

	M _s (Am ² /kg-Ni)	$K_{\rm ef}$ (× 10^3 J/m ³)
Ni-AC	22(3)	9.7(4)
Ni bulk	54.5	4.5

MAGNETIC PROPERTIES: 2. M vs T (ZFC-FC behaviour)

$$T_B = \frac{KV}{25k_B}$$

MAGNETIC PROPERTIES: 3. M vs μ_0 H

$$\mu_o H(T) = \mu_o H_c(0) \left[1 - \sqrt{\frac{T}{T_B}} \right]$$

SUMMARY & CONCLUSIONS

- Ni nanoparticles can be easily inserted in activated porous carbons.
- The addition of sucrose protects the nanoparticles in low pH media.
- The Ni-AC powders exhibits magnetization values around 4 Am²kg⁻¹ and SPM at room temperature, hence, its manipulation using conventional permanent magnets for applications in magnetic separation is assured.
- The combination of electron microscopy, x-ray powder diffraction and magnetization vs. temperature and applied magnetic field measurements show that there is a distribution of nanoparticle sizes ($\approx 7-25$ nm) giving rise to a distribution of blocking temperatures ($\approx 5-230$ K).
- Saturation magnetization is around one half, while the effective magnetic anisotropy is roughly double to those of Bulk Ni.