

The interior interfaces of a semiconductor/metal nanocomposite and their influence on its physical properties

P. Granitzer^{1,2}, K. Rumpf¹, P. Poelt², M. Albu², B. Chernev²

Institute of Physics, Karl Franzens University Graz

Institute for Electron Microscopy, TU Graz

Talk, TNT 2008, Oviedo, Spain

Outline

• PS-Matrix

Fabrication of the PS matrix with a certain morphology

- Structural characterization by SEM
- Nanocomposite system

 Metal-filling ferromagnetic nanostructures
- Specific physical properties due to nanostructuring
- Interface: Si/PS/metal

 FTIR-investigations, Raman-spectroscopy
 Magnetic characterization
- Outlook
- Conclusion

Fabrication of the PS-matrix

Aim: fabrication of mesoporous silicon templates by self-organization

Desired properties: defined morphology with:

oriented, separated pores
quasi-regular pore arrangemet
narrow pore-size distribution

Metal-deposition – ferromagnetic

nanostructures

Metal-filling of the PS-template by electrochemical deposition

Typical used deposition parameters

Current density j [mA/cm²]	Pulse duration t _{pulse} [s]
10	20
20	20
50	10
50	5

Used electrolytes	
$NiCl_2$ – solution: 170 g/l $NiCl_2$ 40 g/l H_3BO_3	
Watts-electrolyt: 45 g/l NiCl ₂ 300 g/l NiSO ₄ 45 g/l H ₃ BO ₃	
CoSO ₄ – solution: 120 g/l NiCl2 30 g/l H3BO3	

Metal filling of the channels depends on the process-parameters

Various metals precipitate differently under similar deposition conditions

Structural characterization of the nanocomposite

Precipitated Ni-stuctures

With decreasing pulse duration the elongation of the precipitated nanostructures increases

$$t_{P} = 5 \text{ s}$$
$$1 = 2 \mu \text{m}$$

$$t_{\rm P} = 10 \text{ s}$$

1 = 500 nm

$$t_{\rm P} = 40 \text{ s}$$

1 = 60 nm

EDX spectroscopy - element distribution

Spatial Ni-distributions

Realtion between current density and deposition depth

Embedded metal-structures

Embedded Ni-wires

Deposited Ni within the pores shows a distribution between spherical and elongated particles.

Elongated Ni-particles with a length of about 2 μ m and a diameter of 50 nm (aspect ratio 40).

PS-channels: aspect ratio ~ 1000

Embedded Co-particles

Gradient of the Co concentration with increasing pore length.

The size of the precipitated Co-particles is in the range of a few hunded nm. The filling is achieved down to the por tips.

Deposited Ni-layer

⇒ Of interest for coming transport measurements

Deposited Co-layer

Nanosystem – particles / wires

Ferromagnetic nanosystem with tailored metal structures:

Magnetic properties of such ferromagnetic nanoparticles mainly depend on their size and shape

Properties of the whole system are determined by the distribution of the structures and their mutual arrangement

⇒ Magnetic properties tunable by process parameters

Distribution of the magnetic nanostructures

Modification of the PS-templates

 \Rightarrow influence on the magnetic interactions

⇒ <u>Different interactions</u> of the particles:

Constitution of the second sec

- Dipolar interaction
- Exchange interaction RKKY-interaction
- Interaction by tunnelling through barriers

⇒ Complex system with tunable properties

Specific physical properties due to

• Silicon ⇒ PS: optical properties change due to QC-effects the properties are influenced by oxidation

(L. Canham, Appl. Phys. Lett. 57, 1990, 1046)

• Metal nanostructures: magnetic behaviour – change from multi domain to single domain behaviour oxidation of particles – exchange bias effect (if the metal-oxide is AFM)

(J. Nogues, et al. Physics Reports 422, 2005, 65-117)

Knowledge about interface important

Interface

Optical characterization is carried out by FTIR-spectroscopy

FTIR-magnetometer: Bruker Equinox 55

Raman-spectroscopy

Structural characterization

SEM-, TEM-images

Magnetization measurements performed by SQUID-magnetometry

SQUID-magnetometer: Quantum Design MPMS XL7

Field range: ± 7 T

Temperature range: 1.7 K - 360 K

Resolution: 5·10⁻⁹ emu

SEM – EDX spectroscopy

EDX-Spectroscopy

EDX-Spectra, 3keV

Ni-distribution is in good agreement with the pore length; The estimated oxigen content is due to SiO₂

TEM-images of FIB cut sample

Ni-filled PS-specimen cut by FIB

90eV gefiltert Serie 5

Top view-image showing the Ni-filled pores

Interior surface of the **PS-template**

HRTEM – crystalline orientation

Ni-particles within pores

HRTEM of a Ni-particle

EELS-spectrum of a Ni-particle Ni L23

Crystalline orientation of a Ni-particle

Oxide distribution

Optical behaviour

FTIR-investigations

Comparison between as-etched PS and aged PS


```
Si-H vibration modes:
```

2087 cm⁻¹: Si₂-Si-H₂

stretching mode

2115 cm⁻¹: Si₃-Si-H

streching mode

2138 cm⁻¹: Si₂-Si-H

streching mode

O-Si-H modes:

2250 cm⁻¹

Si-OH modes:

1635 cm⁻¹

FTIR-investigations of metal filled samples

Comparison between Ni and Co filled specimens

2200 cm⁻¹ and 2250 cm⁻¹:

O-Si-H modes

1635 cm⁻¹: Si-OH

Co-loaded sample:

~ 2100 cm⁻¹: SiH-modes

2964 cm⁻¹: SiO_x modifications

Ni-loaded sample:

1368 cm⁻¹. SiO₃

Raman-spectroscopy

Comparison between bare PS and Ni-filled PS

Shift of the Raman peak of PS/Ni to lower wavenumbers caused by stress

Raman-mapping

Micrograph of a PS/Ni sample

Raman mapping of the area shown beside:

Green: Ni-loaded regions – shift of the Raman peak

due to higher stress

Yellow: silicon

Magnetization measurements

Proof of an oxide shell

Symmetrical coercivity ($H_C = 270 \text{ Oe}$) obtained from field cooled measurements indicates that the metal particles are not covered by an antiferromagnetic oxide layer

Due to field cooled measurements exchange bias effects can be excluded.

Perspectives and ideas for future work

- Control of oxide growth during electrodeposition
- High quality oxide layer as tunnel barrier for spin-injection into silicon

Transport measurements
 (magnetic field parallel and perpendicular to the surface, respectively)

Conclusion

- Effective method to achieve a quasi-regular PS template in the meso-/macro porous regime without lithography.
- The oriented pores show a quite homogeneous pore distribution which shows a quadratic-like symmetry for special preparation conditions.
- This PS template is used for filling with a ferromagnetic metal to obtain 3-dim nanostructure arrays with tunable magnetic properties.
- This nanocomposite system gives rise to applications in sensor technology, magneto-optical devices but also to detect spin-injection into Si. Promising candidate for silicon based spintronic devices.

Coworkers

H. Krenn

K. Rumpf

P. Granitzer

P. Poelt

M. Albu

B. Chernev

Colaboration / Acknowledgements

nanolytics Dr. K. Schilcher

THANK YOU FOR YOUR ATTENTION!