TNT 2008, Oviedo

How are nanoparticle interactions and assemblies different from molecular and colloidal assemblies

Jacob Israelachvili

UCSB

Surface-area-to-volume scaling effects: skin depths and proximity lengths

Many properties are not 'additive'. For example, AC conductivity, mechanical strength, melting temperatures, chemical activity, magnetic and opto-electronic properties are often determined within a finite surface layer, attaining their maximum value only after a certain critical 'skin-depth' or 'proximity length', λ , from the surface has been reached. The most common expression for such a property is: $I(x) = I_{\infty} - (I_{\infty} - I_r)e^{-(x-r)/\lambda}$. where x is the distance from the surface, and r is the atomic or molecular size.

Property	λ	Equations for particles (or thin films) of radius (film thickness) <i>R</i>	
Cohesive energy, latent heat* Surface tension* Melting point depression of metals*	0.3 – 2 nm 0.3–5 nm 1–3 nm	$E_{\rm r} = E_{\rm bulk}(1-\lambda/R)$ Tolman equation: $\gamma_{\rm r} = r \gamma_{\rm bulk}/(R+\lambda)$ $T_{\rm r} = T_{\rm bulk}(1-\lambda/R)$	
Vapour pressure	0.3–10 nm	Kelvin equation: λ depends on the relative humidity or vapour pressure.	
Chemical reactivity			
Covalent bonds	0.5 nm	-	
Electron transfer	0.7–1.0 nm	'Harpooning effect'	Review article by
Opto-electronic properties [†]			Min et al., nature
a.c. conductivity (metals)	~1 µm at 1 GHz	$\lambda \propto 1 / \sqrt{\text{frequency}}$	•
d.c. (conducting polymers)	~Two molecules	-	materials (2008)
Bandgap energy	2-30 nm	-	7, 527.

^{*}The first three properties are intimately related and interdependent.

[†]Detailed discussion of electronic and optical properties is outside the scope of this review.

For a nano-structured material composed of nanoparticles of radius R, putting x=R, the bulk intrinsic property of the material is therefore

$$I_{\text{bulk}} = 4\pi R^2 I(R) \times \text{(particle density)} \approx 4\pi R^2 \left[I_{\infty} - (I_{\infty} - I_r) e^{-(R-r)/\lambda} \right] / \frac{4}{3}\pi R^3.$$

The figure shows plots of I_{bulk} for various values of I_{r}/I_{∞} vs the normalized skin depth, λIr . Note how the bulk properties of nano-structured materials can peak at a particular radius R of their constituent nanoparticles even though the properties of the individual nanoparticles do not peak at any particular size.

Different intermolecular and interparticle forces, some short-ranged, some long-ranged.

Missing phases (phase transitions) in nanoparticle assemblies

nature materials (2008) 7, 527.

1-component nanoparticles, simple shapes, hard or soft

1-component, with at least one dimension in the nano-regime

2 or more components (core-shell structures, etc.)

Acorns

Microemulsion droplet (swollen micelle)

Surface Forces Apparatus (SFA)

Various types of randomly rough, patterned and nanoparticle-coated surfaces studied by SFA

M. Benz et al., *J. Phys. Chem. B* (2006) 110, 11884.

Engineered nano-structured materials [smart, adaptable, switchable, responsive,]

Bioengineered soft, cell-like structures

Biological nanostructures

The surfaces of gecko toes

There's plenty of room at the bottom.

Feynman (1959)

The bottom's full. But there's plenty of room in the middle.

