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How are nanoparticle interactions and assemblies
different from molecular and colloidal assemblies

Jacob Israelachvili

UCSB



L e a3

Uni







Surface-area-to-volume scaling effects: skin depths and proximity lengths

Many properties are not ‘additive’. For example, AC conductivity, mechanical strength,
melting temperatures, chemical activity, magnetic and opto-electronic properties are
often determined within a finite surface layer, attaining their maximum value only after
a certain critical ‘skin-depth’ or ‘proximity length’, A, from the surface has been reached.
The most common expression for such a property is:  1(x)=1_—(1,,—1,)e """,
where x is the distance from the surface, and r is the atomic or molecular size.

Table 1 Skin depths and proximity lengths, A, of some common material properties.

Property A Equations for particles (or thin
films) of radius (film thickness) R
Cohesive energy, latent heat® 0.3 -2nm E=E,,(1-A/R)
Surface tension* 0.3-5nm Tolman equation: y, = /(A1)
Melting point depression 1-3nm I.=T1-A/R)
of metals™
Vapour pressure 0.3—-10nm Kelvin equation: A depends
on the relative humidity or
vapour pressure.
Chemical reactivity
Covalent bonds 0.5nm -
Electron transfer 0.7-1.0nm ‘Harpooning effect’ Review article by
Opto-electronic propertiest -
a.c. conductivity (metals) ~1 umat 1 GHz ) o< 1/~/frequency Min et_ al., nature
d.c. (conducting polymers) ~ ~Two molecules - materials (2008)
Bandgap energy 2-30nm : 7,527.

*The first three properties are intimately related and interdependent.
tDetailed discussion of electronic and optical properties is outside the scope of this review. 3
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For a nano-structured material composed of nanoparticles of radius R, putting x=R, the
bulk intrinsic property of the material is therefore

.= 47R?1(R) x (particle density) ~47R? [IOO— (1,—1)e ®"* ]/%ERS.

The figure shows plots of |, for various values of I/, vs the normalized skin depth, A/r.
Note how the bulk properties of nano-structured materials can peak at a particular radius
R of their constituent nanoparticles even though the properties of the individual nano-
particles do not peak at any particular size. 4



Different intermolecular and interparticle forces,
some short-ranged, some long-ranged.
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Missing phases (phase transitions) in nanoparticle assemblies
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1-component nanoparticles, simple shapes, hard or soft
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1-component, wj east one dimension in the nano-regime
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Surface Forces Apparatus (SFA)
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Various types of randomly rough, patterned and
nanoparticle-coated surfaces studied by SFA
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Engineered nano-structured materials
[smart, adaptable, switchable, responsive, ....]
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Bioengineered soft, cell-like structures
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Biological nanostructures




There's plenty of
room at the bottom.

Feynman (1959)

Qhe bottom's
full. But there's
plenty of room

@’rhe middle.
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