KONDO EFFECT IN TRANSPORT THROUGH CoPc AND TBrPP-Co ADSORBED ON METAL SURFACES

(EFFECTS OF MOLECULE CONFIGURATION)

- Universidad de Alicante: Instituto Universitario de Materiales y Dpto.
 Física Aplicada
- (Guillermo Chiappe y Enrique Louis)
- Universidad de Buenos Aires
- (Juan Manuel Aguiar-Huarte)
- Universidad Pontificia de Rio de Janeiro
- (Enrique V. Anda)
- Centro Atómico de Bariloche
- (J. Simonin)

OUTLINE

- Kondo physics
- Survey and Summary of experiments:
 CoPc/Au(111) and TBrPP-Co/Cu(111)

A simple model
 CoPc/Au(111): the role of quantum interference

TBrPP-Co/Cu(111): Fano dip versus Kondo peak Isolated versus molecule clusters
The role of molecule conformation

The Kondo effect: metals with magnetic impurities

- Minimum in resistance at low T (1936)
- 1964: Jun Kondo "solves" the Kondo problem

The Kondo Physics

A genuine many-body effect.

MESOSCOPIC AND NANOSCOPIC PHYSICS

- A conductance feature at the Fermi level E_F that may show up either as a peak or a dip (Fano dip)
- Whose width is related to the Kondo temperature T_K (50-250 K)
- AF coupling between strongly correlated atom and leads

Kondo resonance: dips and peaks

STM-CoPc/Au(111)

STM-TBrPP-Co/Cu(111)

Experiments: CoPc/Au(111)

(Zhao et al, Science 309, 1542 (2005))

Experiments: CoPc/Au(111)

$$\Gamma = 2\sqrt{(\pi k_{\rm B}T)^2 + 2(k_{\rm B}T_{\rm K})^2}$$

A very high T_K (> 200 K)

(lancu et al, PRL, 97, 266603 (2006))

(lancu et al, Nanoletters, 6, 820 (2006))

Two conformations

Switched from saddle to planar by applying voltage pulses

Summary of Experimental data

- Molecules: i) both four-lobed structure, ii) dactive orbital at -0.15 eV (CoPc) and -0.7 eV (TBrPP-Co).
- CoPc/Au(111): Kondo peak shows up upon distortion (cutting out H at the lobes ends).
- TBrPP-Co/Cu(111): Kondo Temperature changed by either distortion or by varying the number of neighboring molecules.

CoPc/Au(111): Model and Hamiltonian

$$\hat{H} = \sum_{i\sigma} \epsilon_i c_{i\sigma}^{\dagger} c_{i\sigma} + \sum_{\langle ij \rangle; \sigma} t_{i,j} c_{i\sigma}^{\dagger} c_{j\sigma} + U n_{\mathrm{Co}\uparrow} n_{\mathrm{Co}\downarrow},$$

- Molecule: 5 orbitals, Co and 4 lobes
- 2 additional orbitals: Au and STM tip
- Selfenergies attached to STM tip, Au and 4 lobes

Lobe/lobe hopping switched on upon distortion No direct coupling STM tip/lobes

Model parameters

- Lobes orbitals lying at E_F
- Co orbital at -U/2 (symmetric case)
- Lobe/lobe hopping varied (related to molecule distortion)
- Actual values fitted to give the experimental energy scale

Conductance Calculations

At T=0 and zero bias voltage

$$T(E) = \frac{2e^2}{h} \text{Tr}[t^{\dagger}t], \quad t = \Gamma_{\mathrm{U}}^{1/2} G^{(+)} \Gamma_{\mathrm{L}}^{1/2}$$

Where the matrix t

$$t = \Gamma_{\rm U}^{1/2} G^{(+)} \Gamma_{\rm L}^{1/2}$$

And the Green functions

$$G^{(\pm)} = \left(\left[G_0^{(\pm)} \right]^{-1} - \left[\Sigma_U^{(\pm)} + \Sigma_L^{(\pm)} \right] \right)^{-1}$$

G₀ calculated exactly for a small cluster (Lanczos method) OR

Slave Bosons approach

Conductance Calculations

 Lanczos (Chiappe and Anda): very versatile, ony for zero bias voltage

Slave bosons (Anda et al, Kotliar et al):
 Finite bias. Requires handwork for each particular case

How Kondo peak shows up ...

(Only Lanczos)

Green: no coupling between lobes

Black: standard Kondo resonance with no coupling Co/lobes

When Kondo peak shows up: an e⁻ leaves the molecule and there is AF correlation tip/Co (broken black line)

Quantum Interference

WHY the Kondo resonance should at all be absent in a system containing Co?

The non-existence of the Kondo peak in the UNDISTORTED molecule is the result of Quantum interference

Direct path Au-Co-STM tip interferes with Au-Co-lobes-STM tip

$$G^{(+)}(Au, t) = g^{(+)}(Au, t)$$

 $+ 4g^{(+)}(Au, Co)\Sigma(Co, l)G^{(+)}(l, t),$

Lower case g: no Co/lobe hopping

TBrPP-Co/Cu(111)

- d_{z2} orbital deeper than in CoPc
- Direct coupling STM tip/ lobes comparable to STM tip/Co
 Fano-like interference may act
- Both Lanczos and slave bosons

From dips to peaks

Left: Slave bosons Right: Lanczos

- Red: $t_{l,t} = 0.08 \text{ eV}$
- Magenta: t_{l.t} = 0
- Fano dip: Kondo regime driven by AF Co/lobes correlation

Density matrix

$$P(i,j) = \frac{1}{2\pi} \int_{-\infty}^{\infty} G^{<}(i,j;E)dE$$

TBrPP-Co/Cu(111): analysis of experimental data

At low V_{bias} , the results for $V_{bias} = 0$ are valid

Analysis of experiments: well below E_F

(varying the lobe-lobe hopping)

TBrPP-Co/Cu(111): analysis of experimental data. *A technical point*

- All results (but one) in previous Fig. obtained with hoppings between STM tips and molecule similar to hoppings metal surface with molecule orbitals WHILE they should be much smaller
- The shape does not change if the ratio of t_{Co,t} to t_{l,t} is kept constant
- As hopping to STM tip decreases, T_K decreases down to a constant, while G decreases to zero.

(lancu et al, Nanoletters, 6, 820 (2006))

Two conformations

CAN BE switched from saddle to planar by applying voltage pulses

Effects of Molecule Conformation

- Lobe/lobe hoppings inversely proportional to a power of distance.
- Peak width decreases as average Lobe-lobe distance increases

- Upper: planar.
- Lower: saddle
- Red: $t_{Co,m} = 0$ Black: $t_{Co,m} =$ 0.2 eV

Voltage fully drops at STM/ molecule contact

Local Density of States

Upper: planar

Lower: saddle

Note reduction in the -0.5 eV peak for the saddle configuration.

While both peaks has weight on the lobes, only one has on Co and, thus, in the conductance

lower peak is fully symmetric (++++) while higher is antisymmetric (+-+-)

Effect of Potential Profile

- Left: 25/75 %
- Right: 50/50%
- Drops at Mol/metal & mol/STM
- Experiments are explained if the potential is rather symmetric

Concluding Remarks

 A model, which incorporates in a simple way the internal structure of the molecules, has allowed us to describe the Kondo effect in transport through CoPc/Au(111) and TBrPP-Co/Cu(111)

 The molecules have a four lobed structure, to which we ascribe an essential role, the active d-orbital being deeper in CoPc

Concluding Remarks

- We showed that, the lobe/lobe hopping, modified experimentally by distorting the molecule, controls even the entrance into the Kondo regime
- The transition from Fano dips to Kondo peaks is controlled by the ratio of STM tip/Co to STM tip/lobes hoppings
- TBrPP-Co/Cu(111): the model reproduces satisfactorily the differences between saddle and planar configurations

The system is out of the reach of DFT approaches

References

PRL:

PRL 97, 076806 (2006)

PHYSICAL REVIEW LETTERS

week ending 18 AUGUST 2006

Kondo Effect of an Adsorbed Cobalt Phthalocyanine (CoPc) Molecule: The Role of Quantum Interference

G. Chiappe^{1,2} and E. Louis¹

PRB:

PHYSICAL REVIEW B 76, 155427 (2007)

Kondo effect in transport through molecules adsorbed on metal surfaces: From Fano dips to Kondo peaks

J. M. Aguiar-Hualde, G. Chiappe, L. Louis, and E. V. Anda

PREPRINT:

Effect of molecule conformation on transport through TBrPP-Co adsorbed onto Cu(111)

J.M. Aguiar-Hualde, ¹ G. Chiappe, ² E. Louis, ² and J. Simonin ³

THANK YOU

Experiments: CoPc/Au(111)

 $T_K = D_0 e^{-(\pi U/8M\Delta)}$

U larger in Co than in CoPc Thus, T_K is smaller in Co

Slave Bosons

- Introduce new boson operators that create (or destroy) empty, singly or doubly occupied sites
- Constraints: 1) a site can only be empty, singly or doubly occupied, 2) if there is a fermion on a site, then it is singly or doubly occupied
- Transform fermion operators to acount for those constraints
- Rewrite Hamiltonian and introduce constraints through Lagrange multipliers
- Mean field approx. and minimize energy with respect multipliers and boson expectation values
- Result: model parameters are renormalized

Weight of the Kondo peak

Blue and magenta: two values of Co/tip hopping

The result of an interplay of several parameters

More on the effects of the internal structure of the molecule

- Varying the lobe/ lobe coupling
- For t_{I,I} =0 the system is out the Kondo regime (revealed, for example, by the dependence on U)

More on the effects of the internal structure of the molecule

- Just changing sign of the lobe/lobe coupling
- The hopping Co/ metal substrate does not matter much