

Optical detection and Spectoscopy of individual nano-objects

NanoPhotonics group Centre de Physique Moléculaire Optique et Hertzienne CNRS & Bordeaux University, France

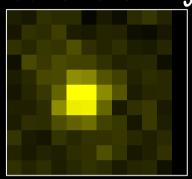
http://www.cpmoh.cnrs.fr/nanophotonics

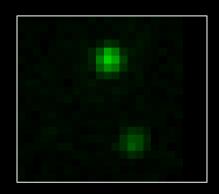
Scientific Context (1)

Single Nano-objects detection

Why?

No ensemble averaging (distributions)


- Time evolution, no synchronization needed
- Sub-wavelength localization possible
- Extreme sensitivity to local environment
- Isolate a single quantum system


How?

- Far Field Optical Detection Techniques
 - → Simple & Non-invasive measurements
 - → Large variety of spectroscopic tools
- · Make sure that:
 - only one nanoobject interacts with the laser in the excitation volume (→ very low concentrations and volumes at diffraction limit)
 - the signal from the nanoobject dominate all sources of background

Scientific Context (2)

- Luminescence based methods:
- \rightarrow Luminescent nano-objets only!

Fluorescent Dyes: Photobleaching

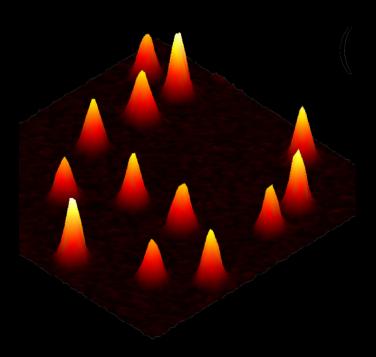
Semiconductor Nanocrystals: Blinking

- Rayleigh scattering based methods:
 - → Particle Size
 - → Scattering Background

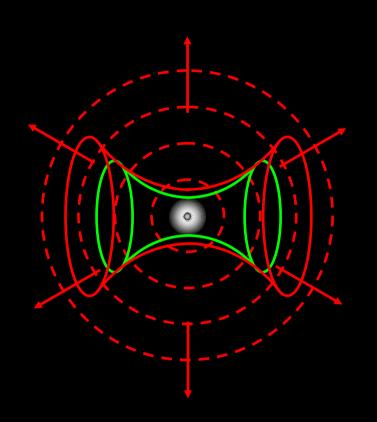
How to detect small, non-luminescent individual nano-objects?

- Absorption based detection methods
- ightarrow eg. for small spherical nanoparticles : σ_{abs}^{\sim} D^3 , whereas σ_{scatt}^{\sim} D^6

Imaging Individual Nano-Objects via Absorption


- Good candidates for absorption-based methods
- \rightarrow Large absorption cross sections
- → Small time intervals between consecutive absorption events
- Metal Nanoparticles fulfill both requirements
- → High absorption near the Surface Plasmon Resonance

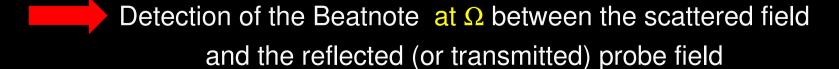
5 nm gold NP: $\sigma_{abs} \sim 6.10^{-14}$ cm² $\sim 10^2$ $\sigma_{abs-molecule}$


- \rightarrow Short electron-electron and electron-phonon relaxation times (~1 ps)
 - Direct absorption measurement would not work in a scattering environment. Need a "dark field" method
 - → Particles have a very low luminescence yield
 - → Absorbed energy converted into heat

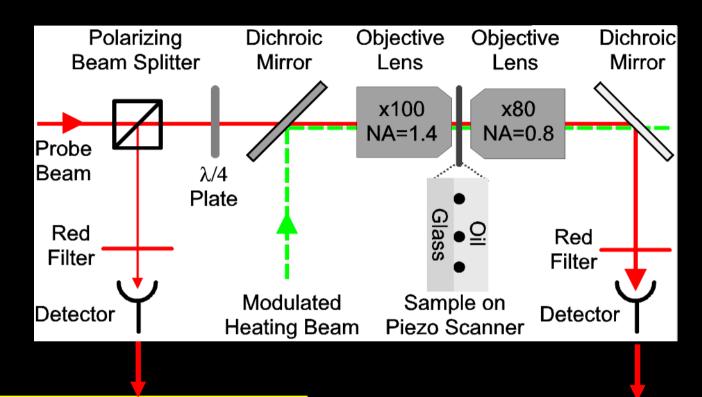
Detection using the photothermal effect...

Photothermal Heterodyne Imaging of Individual Nano-objects

Phothothermal Heterodyne Imaging (PHI)


Modulated Heating Beam (at Ω)

Nanoparticle: Heat point source

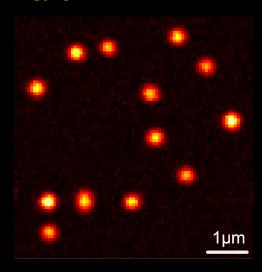

Refractive index profile characteristic size r_{th}

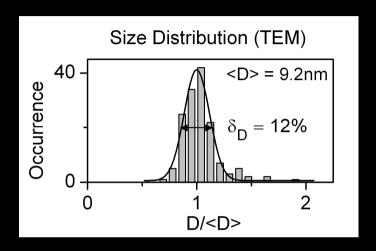
Non-resonant Probe beam

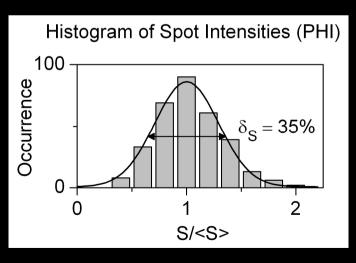
Scattered field (with sidebands at $\pm \Omega$)

Experimental Setup

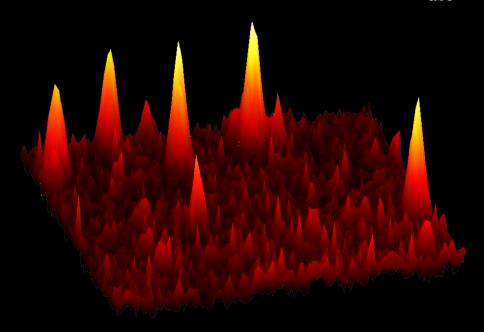
Beatnote at Ω between backward scattered field and the reflected probe beam extracted by lock-in detection


Beatnote at Ω between forward scattered field and the transmitted probe beam extracted by lock-in detection

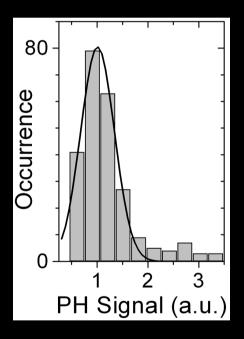

Imaging of 10 nm Individual Gold Nanoparticles


Backward

Forward



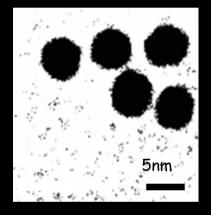
→ *Individual* Nanoparticles


Optical Detection of Individual 1.4 nm Gold Nanoparticles

- Sample of 1.4nm gold nanoparticles (~67 atoms) embedded into a PVA matrix
- Nanoparticle absorption cross section σ_{abs}^{-15} cm²

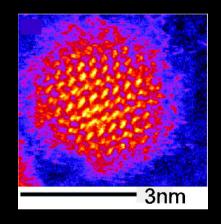
Photothermal Heterodyne Image

 $5 \times 5 \mu m^2$ (80 nm / pixel, 10 ms / pixel)

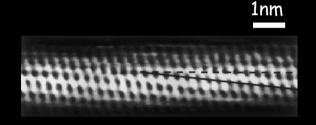


Unimodal Histogram of spot intensities

S. Berciaud et al., Phys. Rev. Lett. 93, 257402, (2004)


Absorption sopectroscopy of Individual nanoobjects

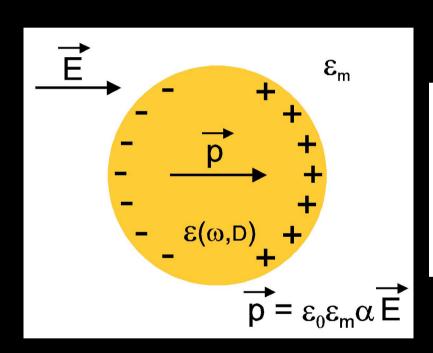
Au NPs


Berciaud et al. Nano Lett. 3 (2005)

CdSe NCs

Berciaud et al. Nano Lett. 5 (2005)

Carbon Nanotubes



Berciaud et al. Nano Lett. (2007)

TEM image of gold Nanoparticles: Berciaud et al. Nano Lett. (2005)
TEM image of a single CdSe Nanocrystal: Mc Bride *et al.* Nano. Lett. (2004)
STM image of a single carbon nanotube: Wildöer *et al.* Nature (1998)

Surface Plasmon Resonance Spectroscopy of Individual Gold Nanoparticles

a $<<\lambda_{excitation}$: Quasistatic (or dipolar) Approximation :

$$\alpha = \frac{\pi}{2} \boxed{D^3} \frac{\varepsilon - \varepsilon_m}{\varepsilon + 2\varepsilon_m}$$
 and $\sigma_{abs} = k \operatorname{Im}(\alpha)$

$$\sigma_{abs} = 4\pi \boxed{D^{3}} \varepsilon_{m}^{3/2} \frac{\omega}{c} \frac{3\varepsilon_{2}}{(\varepsilon_{1} + 2\varepsilon_{m})^{2} + \varepsilon_{2}^{2}}$$

$$\boldsymbol{\varepsilon} = \boldsymbol{\varepsilon}_1 + i\boldsymbol{\varepsilon}_2$$

- Resonant Oscillation for minimal $\varepsilon_{l} + 2\varepsilon_{m}$
- Achievable in metals where $Re(\varepsilon)<0$ in the optical domain

SPR in Gold Nanoparticles

$$\varepsilon(\omega) = \underbrace{\varepsilon_{DC} - \frac{\Omega_p^2}{\omega(\omega + i\gamma_0)}}_{\text{Modified Drude Term}} + \underbrace{\varepsilon_{IB}(\omega)}_{\text{Interband Term}}$$

 Ω_p : plasma frequency, γ_0 : optical dephasing rate

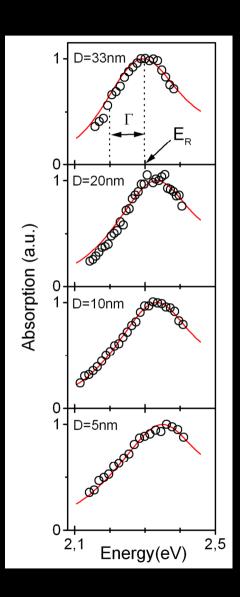
Intrinsic size effects

- Electron mean free path in bulk gold : $L_e \sim 14 \text{ nm}$
- \rightarrow For D < L_e : Size dependent dielectric constant

$$\gamma(D) = \gamma_0 + \frac{2gv_F}{D} \Rightarrow \varepsilon(\omega, D) \approx \varepsilon_{bulk}(\omega) + i \frac{\Omega_p^2}{\omega^3} \frac{2gv_f}{D}$$

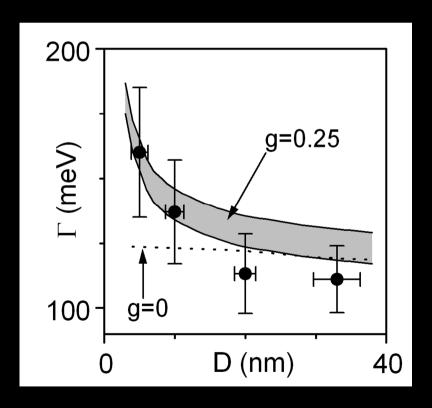
• Observable effects: Broadening of the SPR with decreasing NP size

Size Dependence of SPR width Γ Observation of Intrinsic Size Effects

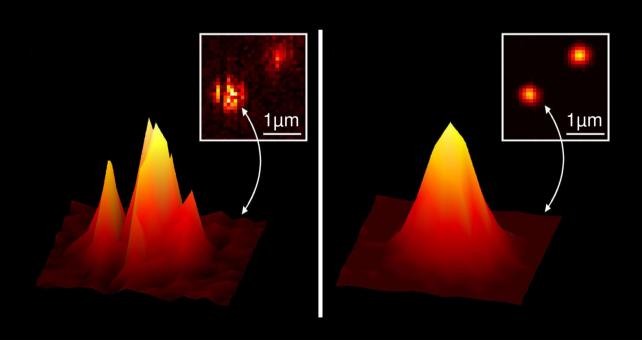

Diameter:

33 nm

20 nm

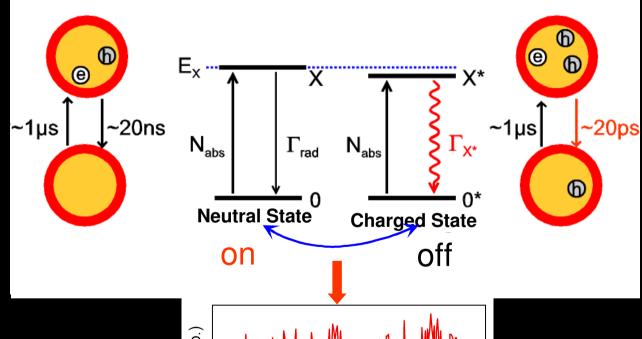

10 *nm*

5 *nm*

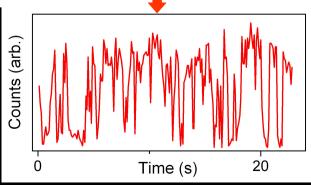


Red shiftwith increasing size (D > 20 nm)Broadening

with decrasing size (D < 10 nm)


Imaging & Absorption Spectroscopy of Individual Semiconductor Nanocrysals

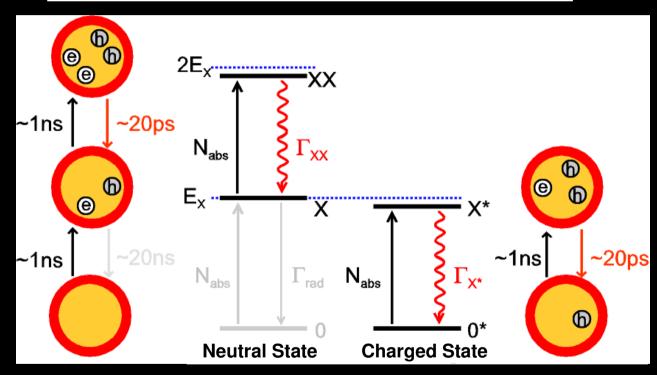
Photophysics of Nanocrystals (1)


Low excitation: N_{abs} ~ 1 μs^{-1} << Γ_{rad} = (1/20) ns⁻¹ \rightarrow Monoexcitonic regime

Monoexciton

Trion
Non-radiative
Recombination

Luminescent Nanocrystals
"Blinking "



Photophysics of Nanocrystals (2)

High excitation: N_{abs} ~ 1 ns⁻¹>> Γ_{rad} = (1/20) ns⁻¹ \rightarrow Formation of biexcitons

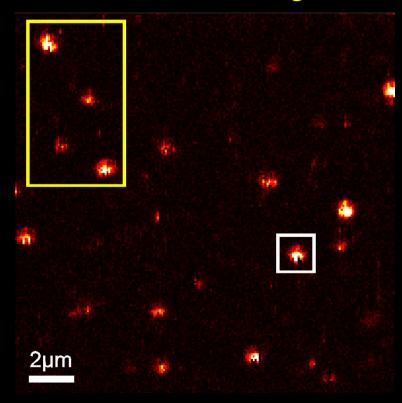
Biexciton

Monoexciton

Trion

 $\Gamma_{\text{rad}} << \Gamma_{\text{XX}}, \Gamma_{\text{X}^*} \rightarrow \text{Very weak luminescence}$:

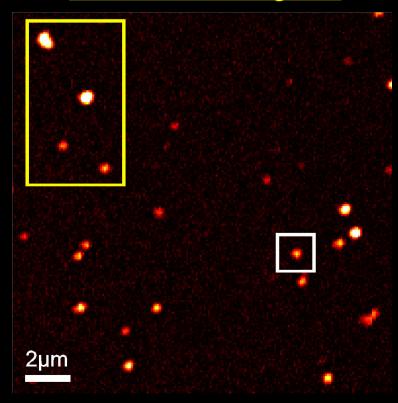
High absorption & rapid non-radiative relaxation via Auger processes

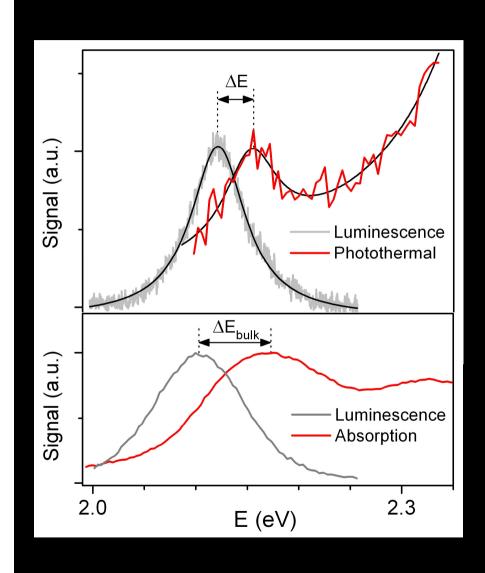

 \rightarrow Photothermal Signal due to XX \leftrightarrow X & X* \leftrightarrow 0* ?

Photothermal Imaging of CdSe/ZnS Semiconductor Nanocrystals

Luminescence

 $_{\rm abs}^{\sim}$ 1photon / $_{\rm \mu s}$ $_{\rm abs}^{\sim}$ 10⁻¹⁵ cm², $\tau_{\rm relax}^{\sim}$ 20 ns

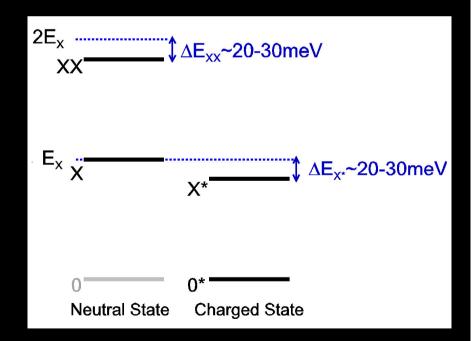

Monoexcitonic Regime


Photothermal

 N_{abs} ~1 photon / ns σ_{abs} ~10⁻¹⁵ cm², τ_{relax} ~20 ps !

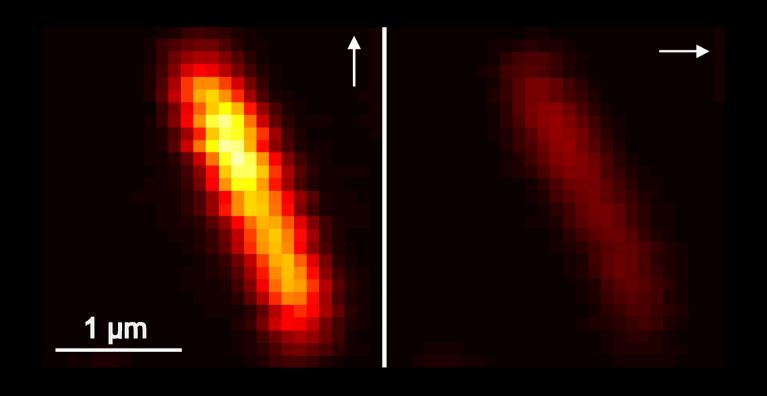
Biexcitonic Regime

Single CdSe Spectroscopy


· Same Nanocrystal

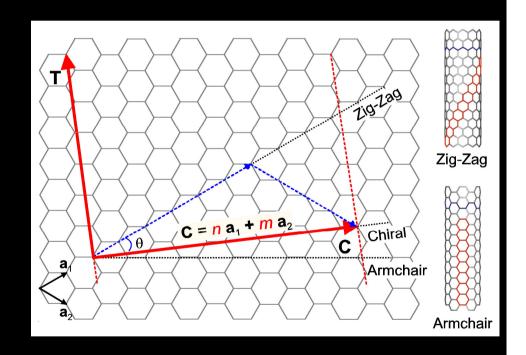
Luminescence: Monoexcitonic regime

$$N_{abs} << \Gamma_{rad}$$


Absorption: the biexcitonic regime

$$N_{abs} >> \Gamma_{rad}$$

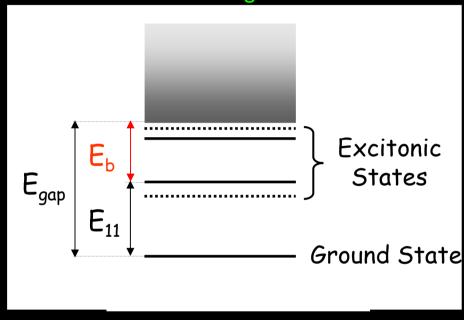
S. Berciaud et al., Nano Letters 5, 2160 (2005)

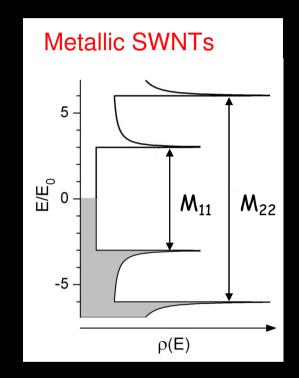

Imaging and Spectroscopy of Individual Single Walled Carbon Nanotubes

Single Walled Carbon Nanotubes (SWNTs)

SWNT = Rolled-up *single* graphene sheet

- Diameter ~1nm, length up to ~1cm
- → Quasi 1D systems
- Outstanding mechanical, thermal, electrical,... properties
- SWNT diameter, chiral angle and electronic structure given by two (n,m) integers:
- Metallic if mod(n-m,3)=0
- Semiconducting if mod(n-m,3)=1, 2




Example: (6,4) semiconducting tube

Background on the SWNTs optical properties

1D Density of states dominated by sharp van Hove singularities ($\propto (E-E_i)^{-1/2}$)

Semiconducting SWNTs

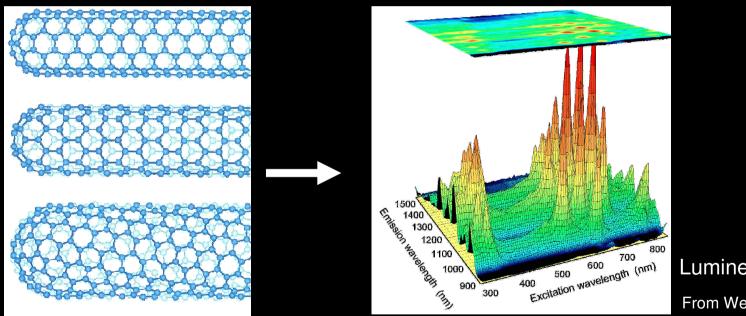
Wang et al, Science (2005), Maultzsch et al Phys. Rev. B (2005)

- Strong *e-h* interactions
- → Excitonic effects

→ Transition energies < Band Gap

Luminescence:

Decay, sensitivity to local environment, absorption cross-section, quantum yield....

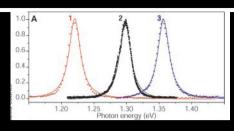

What about optical transitions?

Absorption features arise from inter-band transitions of largely non-interacting quasiparticles or from an excitonic transition of strongly correlated electron-hole pairs?

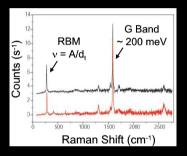
Ensemble spectra

Suspensions of individualized SWNTs display a great *heterogeneity* in terms of:

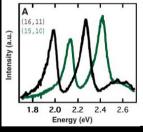
- Structure and Electronic properties
- Quality/defects ... and thus *optical properties*

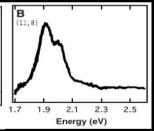

Luminescence Map From Weisman Lab, Rice

This makes *ensemble* studies not *fully* adequate for a precise understanding of the SWNTs spectroscopic properties.

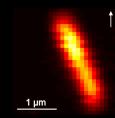

Optical detection of individual SWNTs

Luminescence Spectroscopy


- → Limited to semiconducting SWNTs
- → Highly sensitive to environmental effects
- Raman Spectroscopy
- → Semiconducting & Metallic
- \rightarrow Weak signals
- → Indirect method (fiting procedure)
- Rayleigh Spectroscopy
- → Semiconducting & Metallic
- →Limited to long, large diameter, suspended tubes to avoid background
- Photothermal (absorption) Spectroscopy
- → Semiconducting & Metallic
- → Insensitive to scattering environment



Hartschuh et al. *Science* (2003) Lefebvre et al., *Phys. Rev. B* (2004) Htoon et al., *Phys. Rev. Lett.* (2004)

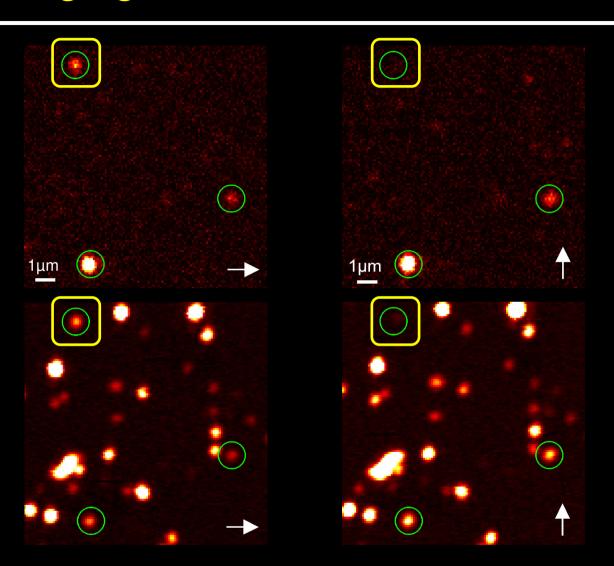


Hartschuh et al. *Science* (2003) Meyer et al, *Phys. Rev. Lett.* (2005).

Sfeir et al. Science (2006)

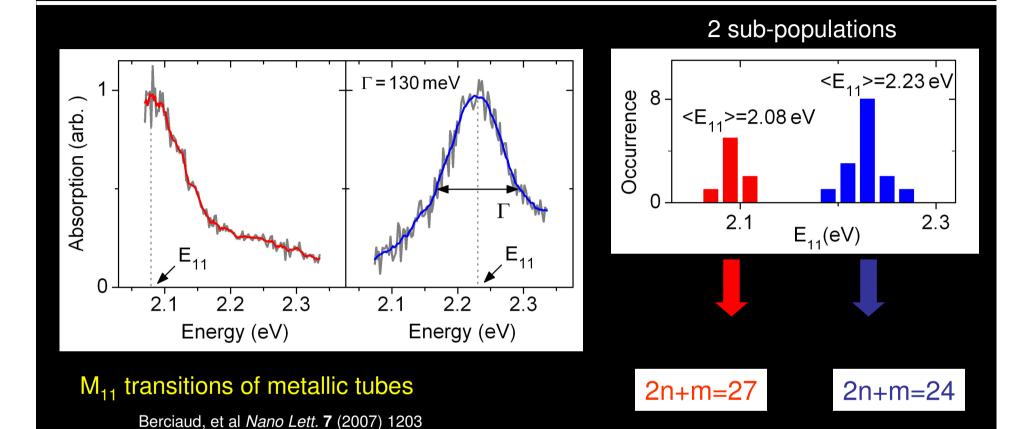
Berciaud et al. Nanoletters (2007)

Photothermal Imaging of Individual SWNTs


Luminescence

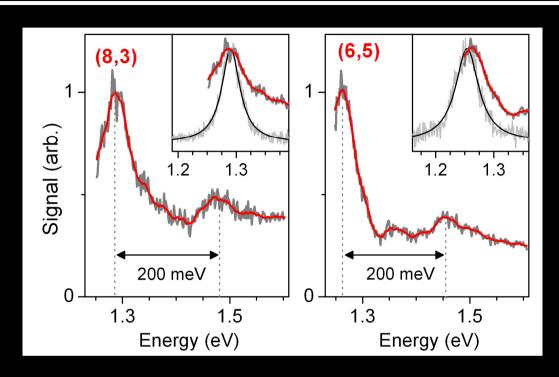
Semiconducting SWNTs With 850nm $< \lambda_{11} < 1050$ nm

Photothermal


All Semiconducting

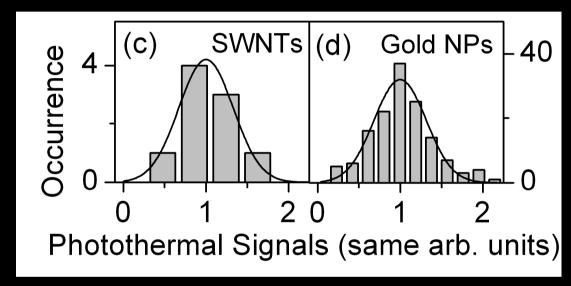
AND Metallic SWNTs

- Strong polarization dependence:
- \rightarrow Maximum signal for \mathbf{E}_{laser} // SWNT axis


Excitonic effects in metallic nanotubes

Symmetric absorption bands: a signature of excitonic effects in metallic tubes!

- Theoretical predictions by Steven G. Louie et al. Nano Lett 7 (2007) 1626
- Demonstration by the Berkeley/Columbia groups on higher transition M_{22} of larger metallic nanotubes, Wang et al Phys. Rev. Lett. **99**, 227401 (2007)


Semiconducting Nanotubes

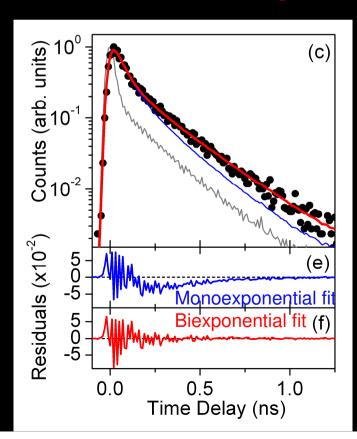
- Absorption peaks:
- \rightarrow S₁₁ transitions of semiconductor tubes
- → very small Stokes shifts (~10 meV)
- Side Band at ~200 meV (G band)
- independent of chirality (n,m)
- → Exciton-Phonon bound state

Absorption cross-section

Calibration of absorption signals to well known gold nanoparticles (10nm)

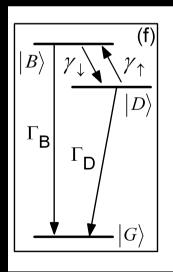
 σ_{22} ~ 90 nm²/µm for (6,5) nanotubes (1 ± 0.3) x 10⁻¹⁷cm² per Carbon atom

Berciaud et al. Phys. Rev. Lett 2008


Up to one order of magnitude larger than previous bulk determinations (Islam et al, PRL, 2004)

Time resolved luminescence of individual SWNTs

The presence of defects/surface interactions affect the luminescence decay of:


- nanotube suspensions (multi-exponential decays) Hirori et al, PRL (2006), Berger et al, NanoLett. (2007)
- isolated short nanotubes near a surface (short decays) Hagen et al, PRL (2005), Gokus et al, APL (2008)

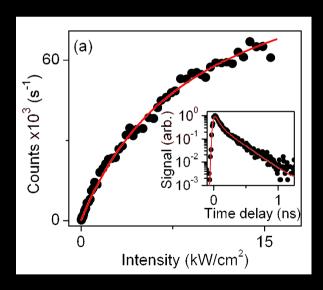
Luminescence decays of high quality *individual* SWNTs (SDBS wrapped (6,5) tubes immobilized in agarose gels)

2 intrinsic decay times: 30-70 ps and 150-400 ps

- Excitonic level fine structure
- « Weak » coupling between bright and dark excitonic states

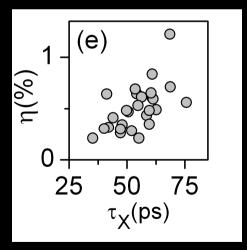
Berciaud et al. Phys. Rev. Lett 2008

Absorption cross-section of individual (6,5) SWNTs


• Detected count rate in the *monoexcitonic regime* ($1/\Gamma x$ effective lifetime)

$$N=N_{0}\,rac{N_{abs}/\Gamma_{X}}{1+N_{abs}/\Gamma_{X}}$$

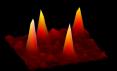
ullet Rate of photons absorbed by a nanotube length of Λ


$$N_{abs} = \sigma_{22} \Lambda \frac{I}{\hbar \omega}$$

Measurement of the luminescence decay times + detected count rate as a function of cw excitation intensity in the monoexcitonic regime on each single SWNT

 $\sigma_{22} \sim 85 \pm 30 \ nm^2/\mu m$ or Comparable to the photothermal value!

Implications for the luminescence quantum yield:



Consistent with Lefebvre et al, Tsyboulski et al, etc... after corrections for the absorption cross-section

General Conclusion

- Highly sensitive optical detection method
 - Simple experimental setup
 - Detection of 1.4nm gold nanoparticles, CdSe nanocrystals, Carbon Nanotubes...
- Quantitative spectroscopy at the single particle level
 - Measure of the homogeneous linewidth
 - Intrinsic size effects in the SPR of gold nanoparticles
 - Photothermal absorption spectroscopy of CdSe Nanocrystals (biexciton and trion binding energies)
 - Characterization of semiconducting and metallic Carbon Nanotubes

Acknowledgments

Bordeaux Nanophotonics Group

Stéphane Berciaud (Now at Columbia)

Dr. Laurent Cognet

Vivien Octeau (PhD student)

Dr. Gerhard Blab (PostDoc)

Dr. Philippe Tamarat

J. Duque (visiting student from Rice)

Collaborations:

B. Weisman (Rice Univ.)
P. Poulin (CRPP, CNRS Bordeaux)

