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Molecular ElectronicsMolecular Electronics

Room Temperature Negative Differential Resistance through Individual 
Organic Molecules on Silicon Surfaces (Guisinger et al., Nano Letters 4, 55 (2004)

Experimental Data

Some examples of potential
profiles in molecular electronics
(Phys. Today, May 2003)



Why Do We Care about Noise?
- It limits the performance of nanodevices
- It sheds “microscopic” light on electron transport

(Physics Today, May 2003)

The Noise is the SignalThe Noise is the Signal (Rolf Landauer)
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SI = F(2qI)

Electronic Noise = Rapid Fluctuations in the Average Value of an 
Electrical Quantity (voltage, current)



Electronic Noise Electronic Noise 

• First studied by W. Schottky (1918)
• Electrons emitted at random from hot cathode
• Fluctuation in number of electrons follows 

Poisson distribution
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Noise Power
Spectral Density= 2 x Charge x Current

Electronic fluctuations occur because of:
— finite temperature (thermal noise)
— charge discreteness (shot noise) 
— trapping/detrapping of charge (flicker, 1/f noise)
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Noise in Noise in MesoscopicMesoscopic MetalsMetals
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Only in a mesoscopic conductor, is noise different from zero



Determination of the Effective Charge from the Shot Noise Determination of the Effective Charge from the Shot Noise 

e* = 1/3

NATURE 452, 829 (2008)

High-mobility 2D electron gas at GaAs-GaAlAs interface in a magnetic field
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Examples of Shot Noise in Examples of Shot Noise in HeterostructuresHeterostructures
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L ∼ 5 nm

Single Barrier Diode
Charge flow is random
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FanoFano Factor in Resonant Tunneling DiodesFactor in Resonant Tunneling Diodes
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•Fano factor is > 1 in NDC

Experimentally:

reduction

enhancement

― correlated electron motion 

― negative correlation in PDC region

― positive correlation in NDC regionCo
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Smallest Fano Factor ≈ 0.7



Shot Noise in Superlattice Tunnel  DiodeShot Noise in Superlattice Tunnel  Diode

Nanoscale engineering makes it possible to design 
structures with similar (average) electric behavior 
but very different noise characteristics
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Superlattice Tunnel Diode
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Superlattice tunnel diode
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   Resonant
Tunneling Diode

Double-barrier diode
[Song et al., Appl. Phys. Lett. 82, 1568 (2003)]



Sequential vs Coherent Tunneling
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InGaAs/InAlAs   DWRTD T = 4K
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Conductance Cannot Distinguish Between 
Sequential and Coherent Tunneling. Can Shot Noise?
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Shot Noise in NShot Noise in N--barrier Systemsbarrier Systems
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[De Jong and Beenakker, 
Phys. Rev. B 51, 16867 (1995)]
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Γ = 0.01, except for first barrier

Multiple-barrier Structure
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TripleTriple--barrier Resonantbarrier Resonant--Tunneling DiodesTunneling Diodes

Samples
A) In0.53Ga.0.47As (Well)

Al0.48In0.52As (Barrier) 
Middle Barrier 60 Ǻ

B) GaAs (Well)
AlGaAs (Barrier)
Central Barrier
Lc = 6.0 nm, 2.0 nm, 1.5 nm

TBRTDs are quite suitable to study the effect of coherence, as interwell
coupling can be varied by changing the central barrier thickness.
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Noise Characteristics of NonNoise Characteristics of Non--coupled TBRTDcoupled TBRTD

[Newaz et al. , Phys. Rev. B 71, 195303  (2005)]
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• Poissonian ( SI=2eI) 
at current peak

• Reduced when 
current rises (PDC region)

• Enhanced in NDC region

Differences

Similarities with DBRTDs:

• Reduction larger 
than predicted

• Asymmetric 
enhancement

Smallest Fano Factor ≈ 0.5

Lc = 6.0 nm



Shot Noise in Strongly Coupled DWRTDShot Noise in Strongly Coupled DWRTD
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Smallest Fano Factor ≈ 0.65

Interwell coupling effectively “eliminates” central barrier 
(from triple-barrier to double-barrier tunneling)



New DirectionsNew Directions

Shot Noise in Graphene
W/L = 5 (a)
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Theory
Ballistic:  W/L > 4       F = 1/3 to 0.1

W/L ~ 1      F ~ 1 or ~ 0

Diffusive:  F ≈ 0.30

Experiment
• Danneau et al., PRL 100, 196802 (2008)

W/L = 24  F ≈ 0.34 to 0.20, depending on n
W/L = 2    F ≈ 0.19
ballistic transport? but F is too large …

• Di Carlo et al., PRL 100, 156801 (2008)
F ~ 0.35 – 0.37, regardless of W/L or n

diffusive transport? but F is too large …

Graphene Nanoribbons
hopping conductance? no noise experiments yet



Main PointsMain Points

Shot-noise measurements in low-dimensional systems
• yield effective charge in interacting electron phenomena (e.g., FQHE)
• elucidate electron transport mechanisms.

In resonant tunneling devices, 
shot noise is reduced or enhanced (relative to Poissonian noise)
depending on nature of electronic correlation.

Shot noise allows to discriminate between different transport 
mechanisms that nevertheless produce same I-V characteristics.

Shot noise (possibly) cannot discriminate between 
sequential and coherent tunneling.

Shot noise is helping to understand electronic transport
in graphene.

In molecular electronics, shot noise measurements could
help elucidate electron transport – but experiment 
is far from trivial.
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