Complex Nanostructures by Atomic Layer Deposition

Kornelius Nielsch

Institute of Applied Physics, University of Hamburg (Germany)

knielsch@physnet.uni-hamburg.de

History and Principle

Ferromagnetic Nanostructures

Low-Temperature Processes and Biomaterials

Novel Synthesis Approach and Nanostructures

History and Principle

Ferromagnetic Nanostructures

Low-Temperature Processes and Biomaterials

Novel Synthesis Approach and Nanostructures

History of Atomic Layer Deposition (ALD) originally Atomic Layer Epitaxy (ALE)

ALD (ALE) was developed by Dr. T. Suntola for thin film electroluminescent (TFEL) displays

First Finish patent 1974 and first U.S. patent 1977

First commercial use: Flat panel display based on ZnS films (from early 1980s).

Todays main use:

Deposition of high-k (high dielectric constant, e.g. HfO₂) thin films in microelectronic industry and research

Atomic Layer Deposition (ALD)

Chemical vapor deposition (CVD):

- thermal decomposition on the substrate
- diffusion rate-limiting

Atomic layer deposition (ALD):

- self-limited reaction with excess reactant
- layer-by-layer growth

ALD – The Principle

Four stages of one ALD cycle:

- a) Exposure of substrate to precursor 1
 → adsorption
- b) Purge with N₂ or Ar \rightarrow removal of excess precursor 1
- c) Exposure of substrate with precursor 2 \rightarrow reaction
- d) Purge with N₂ or Ar
 → removal of excess precursor 2 and reaction products

→ Non-directed deposition method

Synthesis and Surface Engineering of Complex Nanostructures by Atomic Layer **Deposition****

By Mato Knez,* Kornelius Nielsch, and Lauri Niinistö Correspondence Author?

Atomic Layer Deposition (ALD) has recently become the method-ofchoice for semiconductor industry to conformally process extremely thin insulating layers (high-k oxides) onto large-area silicon substrates.

ALD is also a key technology for the surface modification of complex nanostructured materials. After briefly introducing ALD, this review will focus on the various aspects of nanomateriand their processing by ALD including nanopores nanowires and tubes nanopatternin

0 (2005)

Review – Advanced Materials

Synthesis and Surface Engineering of Complex Nanostructures by Atomic Layer Deposition

Mato Knez, Kornelius Nielsch, Lauri Niinistö (HUT, Finland) Advanced Materials **19**, 3425-3438 (2007).

Summer 2007

University of Hamburg

BMBF Nanofutur Group

History and Principle

Ferromagnetic Nanostructures

Low-Temperature Processes and Biomaterials

Novel Synthesis Approach and Nanostructures

65 nm-Period Nickel Nanowire Array Areal Density: 176 Gbit/in²

Patterned magnetic medium with perpendicular magnetisation

- single domain nanomagnets
- achievable areal density*: 700 Gb/in²
 *hexagonal array, lattice constant 33 nm

Nanowire diameter: ~ 25 nm, column length: ~ 800 nm

Chemical Approaches to ALD of Iron Oxides

Iron Oxide Nanotubes by ALD in Porous Alumina

11 nm $\mathbf{Fe}_2\mathbf{O}_3$ in Al_2O_3						
Fe ₂ (O ^{<i>t</i>} Bu) ₆ + H ₂ O @						
140°C						
D _p = 50 nm, D _{int} = 105						
nm						

42 nm Fe_3O_4 , isolated tube $Fe_2(O'Bu)_6 + H_2O @ 140^{\circ}C$ $D_p = 160$ nm, $D_{int} = 460$ nm $ZrO_2 / Fe_2O_3 / ZrO_2$ in Al_2O_3 $Fe_2(O'Bu)_6 + H_2O @ 140^{\circ}C$ $D_p = 160 \text{ nm}, D_{int} = 460 \text{ nm}$

J. Bachmann et al., JACS 129, 9554 (2007).

Highlighted in

Iron Oxide Nanotubes by ALD in Porous Alumina

J. Bachmann et al., JACS 129, 9554 (2007).

Magnetism of Narrow Fe₃O₄ Tubes

Magnetism of wider Fe₃O₄ tubes

Questions ?

- Non-monotonic behavior
- Origin of H_c decay
- Position of optimum

ШΗ

iii

Interpretation: Modes of Magnetization Reversal

Landeros, Appl. Phys. Lett. 2007, 90, 102501

BMBF Nanofutur Group

Quantitative Theoretical Modeling

- Non-monotonic behavior of H_c(d_w) reproduced !!!
- Originates from crossover btw
 two different reversal modes
- Absolute values of H_c too high

υн

iii

Effect of Stray Fields

- Interaction of each tube with its neighbors (stray field) decreases the magnetic field it effectively experiences
- Consequence: lower coercivity

ALD Prozesses for Ferromagnetic Materials

1) Direct Reduction $NiCp_2 + H_2 \rightarrow Ni$ $NiCp_2$

Very Low Deposition Rates: <20 pm / cycle

Very Granular Metallic Films

UΗ

Low Deposition Rates: 20 to 40 pm / cycle

Very Granular Metallic Films

High Deposition Rates: 0.2 to 0.3 Å / cycle Smooth Metallic Films

Nickel Nanotubes by ALD

M. Daub et al, J. Appl. Phys. 101, 09J111 (2007).

Magnetic Properties of Nickel Nanotubes Tube diameter: 35 nm, wall thickness: 10.. 12 nm

UН

н'n

Outlook: Multilayer (Magnetic) Nanotubes

Calculations on Bi-Layer Magnetic Nanotubes

Detailed Investigations on the magnetic behavior of nanotubes: e.g. potential Transitions:

Parallel ($\beta < 0.2$) \rightarrow Curling ($\beta = 0.3..0.6$) \rightarrow Parallel ($\beta > 0.8$)

Core-shell Nanotubes and Nanowires

J Escrig, D Altbir, and K Nielsch, Nanotechnology 18,225704 (2007).

History and Principle

Ferromagnetic Nanostructures

Low-Temperature Processes and Biomaterials

Novel Synthesis Approach and Nanostructures

Atomic Layer Deposition (ALD)

Chemical vapor deposition (CVD):

- thermal decomposition on the substrate
- diffusion rate-limiting

Atomic layer deposition (ALD):

- self-limited reaction with excess reactant
- layer-by-layer growth

ALD on a Complex Substrate

ALD on a Complex Substrate

Summary of low Temperature Processes

Material	Temperature	Precursor 1	Precrusor 2	Reference
SiO2	30°C ^[a]	SiCl₄	H₂O	[68]
	27°C ^[b]	SiCl₄	H₂O	[59]
	RT	Si(NCO)₄	H ₂ O	[58]
CdS	RT	Cd(Me) ₂	H₂S	[60]
Al ₂ O ₃	33°C, 58°C	ТМА	H₂O	[61]
	77°C			[62]
	80°C			[63]
	45°C			[64]
	35°C			[65]
	100°C			[66]
TiO ₂	35°C	Ti(OiPr)₄	H₂O	[65]
	100°C	TiCl₄	H ₂ O	[69]
B ₂ O ₃	20°C	BBr ₃	H ₂ O	[70]
V ₂ O ₅	90°C	VO(OiPr) ₃	O ₂	[71]
HfO ₂	100°C	Hf[N(Me)₂]₄	H₂O	[46]
	90°C			[72]
ZrO ₂	100°C	Zr[N(Me) ₂] ₄	H ₂ O	[46]
ZnO	85°C	ZnEt ₂	H ₂ O	[73]
Pd	80°C	Pd(Hfac) ₂	H ₂	[74]
	80°C	Pd(Hfac) ₂	H ₂ -Plasma	[75]

[a] Catalyzed with NH3. [b] Catalyzed with pyridine.

M. Knez, K. Nielsch and L. Niinistö, Advanced Materials 19, 3425-3438 (2007).

Tobacco Mosaic Virus (TMV)

Length: 300 nm outer Ø : 18 nm inner Ø : 4 nm

 $T < 80^{\circ}C$ 2.8 < pH < 8.5 pI = 3.5

hydrophobic

RNA

TiO₂-deposition on TMV

ALD on Biomaterials

M. Knez et al., Nano Lett. 6, 1172 (2006).

University of Hamburg

BMBF Nanofutur Group

History and Principle

Ferromagnetic Nanostructures

Low-Temperature Processes and Biomaterials

Novel Synthesis Approach and Nanostructures

Development of ALD Processes: SiO₂

J. Bachmann et al. Angew. Chemie(2008).

University of Hamburg

0

BMBF Nanofutur Group

Laser Interference Lithography (LIL) $P = \lambda / 2(\sin \theta)$ Mirror Light ncoming SUBSTRATE Substrate He-Cd Laser λ= 325 nm **Rotation Stage Spatial Filter** Lloyd's Mirror

Limits: 175 nm (HeCd Laser), 140 nm (NdYAG Laser)

Nanoring Arrays by IL Lithography and ALD

ALD and Solid State Reactions

H.J. Fan, M. Knez et al., Nature Materials. 5, 627 (2006).

UН

University of Hamburg

BMBF Nanofutur Group

BMBF Nanotechnology Research Group: Multifunctional Nanowires and Nanotubes

Team MPI-Halle

Christy Chong

Jana Sommerlatte

Jongmin Lee

Ren Bin Yang

Financial support by "Nachwuchswettbewerb Nanotechnologie":

• Bundesministerium für Bildung und Forschung (BMBF)

German Federal Ministry for Education and Research

Bundesministerium für Bildung und Forschung

