

What

8 di-(tert-butyl)phenoxy substituents (DTPO) tetraazatriphenylene substituent (TATP)

Why

Charge transfer complexes including phthalocyanines are widely studied for various reasons:

- they mimic porphyrins involved in processes such as photosyntheses or breathing
- they are used in solar cells due to their broad absorption range — in fact, the most efficient molecular photovoltaic device reported to date has been fabricated using a heterojunction based on copper phthalocyanine and C₆₀*.
- possible candidates for nanoelectronic devices

How

- homebuilt STM + Omicron LT STM
- UHV with a base pressure of 2*10⁻¹⁰ mbar

substrate preparation:

 Ag(111), Au(111) and Cu(111) single crystals were cleaned by cycles of sputtering and annealing

preparation of the molecular films:

- thermal evaporation
- rate was controlled with a quartz crystal microbalance
- possibility to anneal the molecular films
- the underlying metal as well as the central atom of the Pc derivatives didn't induce any observable differences

Symmetric Pc derivative

Symmetric Pc derivative on Ag(111)

density & probability increases: dominant π - metal interaction

Phase	a[nm]	b[nm]	φ[]	ρ [molecules/nm ²]
1	3 ± 0.15	3 ± 0.15	90 ± 3	0.11
II	2.5 ± 0.13	2.5 ± 0.13	67 ± 3	0.17
III	2.5 ± 0.13	2 ± 0.1	73 ± 3	0.21

Symmetric Pc derivative

The phases coexist due to the retardation of the conformational optimization in consequence of the steric entanglement of the substituents.

Asymmetric Pc derivative

Asymmetric Pc derivative on Cu(111)

Reduced sterical entanglement – higher surface density.

Phase	a[nm]	b[nm]	φ []	ρ [molecules/nm ²]
square	2 ± 0.10	2 ± 0.10	90 ± 3	0.25
rhombic	2 ± 0.10	2 ± 0.10	65 ± 3	0.27
dimeric	2.5 ± 0.13	3.5 ± 0.18	68 ± 3	0.25

Various imaging modes help to identify conformation

symmetric Pc derivative

7.4x7.4nm², 7pA
Bias voltage was changed from 0.7V to 2.2V in 0.1V steps.

10x10nm², 0.8V, 63pA

asymmetric Pc derivative

10x10nm², 2 V, 10 pA

Ag(111) 80x80 nm², 77 K

Red peaks coincide with the calculated LUMO and LUMO+1 positions of the C_{60} on Ag(111)* as well as the corresponding peaks of the dl/dV spectrum measured for C_{60} on Ag(100)**

^{*}M. De Menech et al., Phys. Rev. B 2006, 73, 155407.

^{**}X. H. Lu et al., Phys. Rev. Lett. 2003, 90, 096802.

14x14 nm², 77 K

After removing the C60 from each of its binding sites, the underlying ordered layer of the ZnPc-DTPOs remains intact.

Summary

Additional rotational degrees of freedom of phenoxy substituents allow:

- three different coexisting phases
- interaction of the Pc core with the metal substrate
- bowl-like shape

Their sterical entanglement allows the phases to coexist.

Rigid TATP substituent:

- reduces the sterical entanglement of adjacent phenoxy substituents
- Increases surface density
- Allows π π interaction between adjacent TATP substituents

C₆₀ spontaneously binds either to the Pc core or in between two symmetric Pc derivatives

Peripheral C_{60} exhibits electronic properties of C_{60} adsorbed on plain Ag(111) surface, whereas the electronic properties of the central C_{60} differ significantly.

University of Basel:

Dr. Thomas Jung

Dr. Meike Stöhr Dr. Jorge Lobo-Checa

University of Bern:

Prof. Silvio Decurtins

Serpil Boz

Manfred Matena

Dr. Nikolai Wintjes

Dr. Shi-Xia Liu

Mihaela Enache

Stefan Schnell

Dr. Marco Haas

Orientation of domains

Au(111)
herringbone reconstruction
remains intact

50x50nm² 37x18nm² 25x25nm²