

Nano-Optics for Molecules on Chips

CHIMONO

Imperial College London

Outlook

Goal:

Control of cold molecules in single quantum states realized by means of integrated electric, magnetic, radio frequency, micro wave and optical fields

Strategies:

- 1 Electrostatic deceleration of molecular beams
- 1 Association of precooled atomic samples
- 2 Long term storage in integrated magnetic microtraps
- 3 Detection and addressing via integrated nano-optical elements

A Stark decelerator on a chip; the experimental set-up

Trapping CO ($a^3\Pi_1$, J=1, v=0) on a chip in traveling potential wells

Translational temperature of the guided molecules: $\approx 20 \text{ mK}$

S.A. Meek, H.L. Bethlem, H. Conrad & G. Meijer, PRL 100 (2008) 153003

RF-association of cold molecules

Experiment: modulate magnetic field B

$$B(t) = B_{avg} + B_{mod} \cos (\omega_{mod} t)$$

associate molecules by modulating magnetic field near strong Feshbach resonance inelastic molecule-atom collisions

frequency: ~100kHz (binding energy)

amplitude: ~100mG pulse length: ~10ms

thermal cloud ~100nK

theory:

Th. Hanna, Th. Köhler, K. Burnett, PRA 75, 013606

RF-association of cold molecules

Association of ultracold double-species bosonic molecules C. Weber et al. submitted to Phys. Rev. Lett.

Micro-chip traps

Silicon: 2 cm x 3 cm x 600 µm

Gold microwires: 2.5 μ m X 50 ~ 300 μ m

Currents: < 2 A

(from AtomChip lab @ Ben gurion)

single MOT system: Laser power ~ 100 mW

BEC 10⁵ atoms production cycle ~ 1 s

Imperial College London

Surface-induced heating of cold polar molecules

- ➤ In a molecule chip, ultracold polar molecules will be placed close to warm surfaces
- ➤ How quickly are the molecules heated by the warm surface?

> At distances suitable for molecule chips, ~10μm, the heating rates are very low

Counting Atoms, Molecules

Integrating Fiber Optics on AtomChip

Fibre cavity formed by (gluing) dielectric mirrors at the fibre ends + gap to introduce atoms connecting the cavity to two fiber ends

- 2.5 μ m waist
- 5 μm gap
- finesse >100
- The cavity length is scanned using a piezo stretcher
- no alignment needed when mounted using SU8 structures
- >99% coupling through the gap

>5 σ detection of a single atom in 10 μs

with curved mirrors

- Finesse > 1000.
- w~2.5 μm
- gap up to >50 μ m

improved alignment free designs •Finesse up to ~10 000.

•w<2 μ m •g₀/k>1, g₀/G>200, C>100

SM-fibers

X. Liu, et al, Appl. Opt. 44, 6857 (2005)

Atom Detector characterizing by photon statistics

Atom Counter outlook

Integrated Fluorescence Detection

•very simple state selective atom counter with very low background

detection efficiency (in< 40 μs):

Imperial College London

Optical microcavity on a chip – single atom / molecule detection

Dielectric coated micro-mirror

Evanescent Coupling of Fluorescence

Signal from PTCDA molecules

CHIMONO

ICT-2007.8.1 Nano-scale ICT devices and systems

Foreseen Outcome:

• Development of "MoleculeChip"

Long Term Goals:

- 1. Ultimate precision/control of a single atom or molecule functionality, control of the connectivity and of addressability of a single atom/molecule. Control of state and conformation, where the conformation is connected to the function.
- 2. An appropriate technology to exchange energy, data and instructions within a single atom or molecule and between different atoms or molecules
- 3. Control and synthesis down to the sub-nano scale, constructing the system oneby-one from atomic and molecular building blocks