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Atomic force microscope (AFM) is one of the most widely used tools for imaging surface 
topologies of a wide variety of materials. More recently, it has been successfully used in so-
called force curve mode to measure the intra- and inter-molecular forces to confirm the hidden 
mechanical properties of proteins and bio-structures at the single-molecule level. 
The first target molecule in our study was Green Fluorescent Protein (GFP), a famous marker 
in biological field due to its natural fluorescence. It holds a unique structure: a rigid ‘β-can’ 
constructed of 11 β-sheets wrapped around the central helix. We used circular permutation 
method to link the natural termini and produce circularly permuted GFP (cpGFP) variants with 
new termini on surface loops. The mechanical property of two selected cpGFPs were examined 
by AFM and compared with that of the base one, while the optical properties of two mutants 
were detected by total internal reflection fluorescent microscopy (TIRFM). We also applied 
AFM technique to probe the specific molecular recognition, e.g. between proteins and lipid 
membranes. 

 
i) Mechanical distinguish of the toughness on two cpGFPs (quasi-static measurement) 
We have reported, for the first time in the world, that the mechanical toughness of two cpGFP 
molecules, p-54 and p-32, showed distinct characteristics in their force-extent (F-E) curves. 
The mechanical unfolding results revealed the different levels of the reduced mechanical 
stability of cpGFPs and these levels were related to the proximity of the newly introduced 
termini to β-can [1]. 
 

    
 

Figure 1. Perspective view of the designed cpGFPs with termini on different loops 
(left),  

F-E curve of p-54cpGFP (middle) and of p-32 cpGFP (right). 
 
ii) Stretch speed-dependence of intra-molecular mechanics 
For the ‘soft’ p-54, the feature of F-E curves were found to be dependant on the stretching 
speeds. At fast stretching speeds over 100 nm/s, one peak was observed in F-E curves before 
the final rupture of the extended molecule, which we interpreted as the unfolding of two 
terminal halves within cpGFPs, while several more force peaks in a saw tooth pattern were 
detected at a much slower speeds down to 30 nm/s, which we explained the slow stretching 
speed induced cooperative unfolding of more hidden tiny sub-structures [2]. We also proposed 
a model to explain the peaks in F-E curves based on the fitting with worm-like chain model. 
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iii) In-phase response to the sinusoidal input (dynamic measurement) 
We found the dynamic relax-stress response of p-54 to an input signal was exactly in-phase, 
which we conjectured that the elasticity dominates the whole polypeptide chain, so that the 
unfolding behavior observed on p-54 in our work was determined by the position of each sub-
structure, rather than by its mechanical strength [3]. 
 
iv) Specific Recognition between Lysenin and Sphingomyelin (SM) 
We also applied AFM technique to probe the specific molecular recognition between lysenin 
and sphingomyelin (SM) in steady state and in live cell. The measurements gave a new 
understanding of the assembly and functions of lipid rafts, from the mechanical point of view. 
Furthermore, this method can be extended to investigate several probe-lipid combinations and 
ligand- receptor interactions on cells. We have established a new method, based on AFM by 
introducing modified tips with lysenin molecules, for measuring and mapping the specific 
binding force between the lysenin and SM-rich domain in bilayer membrane or live cells. 
 
                            

AFM cantilever

mica

lysenin

SM Chol DPPC DOPC

AFM cantilever

mica

lysenin

SM Chol DPPC DOPC

 
 
 
 
 
 
 
 
 

Figure 2. Schematic view of the designed AFM-sample system (left) and F-E curves 
of lysenin-SM/DOPC (right). 
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