MAGNETIC PROPERTIES IN STRAINED DOUBLE EPITAXIAL NICKEL FILMS WITH PERPENDICULAR MAGNETIC ANISOTROPY.

Edna C. Corredor ^{1,2}, J. L. Diez-Ferrer ^{1,2}, D. Coffey^{1,2}, J. I. Arnaudas^{1,2} and M. Ciria^{2,3}

¹Instituto Universitario de Nanociencia de Aragón, Universidad de Zaragoza.

²Departamento de Física de la Materia Condensada, Universidad de Zaragoza, Zaragoza, Spain.

³Departamento de Magnetismo de Sólidos, Instituto de Ciencia de Materiales de Aragón, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain.

Contact@E-mail

Magnetic films with perpendicular magnetic anisotropy (PMA) are used to improve some technology performances, such as areal density for magnetic recording [1] and are involved in the fabrication of planar nanowires because of their potential use in domain-wall devices proposed for data storage [2] and logic applications [3]. These devices may include several layers with PMA which made the knowledge of the magnetic properties in the resulting system an important issue to optimize device operation. The Cu/Ni/Cu system exhibits perpendicular magnetization for nickel thickness ranging from, approximately, 2 nm to 13 nm and has been a model for the technologically substantial phenomenon of perpendicular magnetization [4]. Here, we present a study of magnetic and structural properties in epitaxial double nickel films: Cu(5 nm)/Ni(3 nm)/Cu(t_{Cu})/Ni(3 nm)/Cu(100 nm)/Si(001), with the interleaving copper layer thickness t_{Cu} ranging between 0 nm and 6 nm. The results reveal the intimate relation between the strain state of the nickel block and its magnetic behaviour.

Figure 1 shows the coercive field H_c and the in-plane strain ϵ , determined by high resolution grazing incidence x-ray diffraction (GIXRD), done in the BM25B beamline of ESRF using a photon energy of hv=15 keV. Assuming the H_c depends on square root of the density of dislocations $\rho^{1/2}$ [5], the line in figure 1 is a fit of H_c to a law proportional to $a-b\epsilon^{1/2}$, where a and b are constants. A portion of the strain in the layer can be released by the formation of misfit dislocations. A mechanism proposed for the formation of dislocation is the glide of the existing threading dislocations in the layer, therefore the dislocation line forms a 90 ° angle at the Cu-Ni interface increasing the dislocation line and taking plastically a part of the misfit strain η . The dimension of the core of these misfit dislocations correspond to a few times the Burgers vector b, and the misfit strain between two materials is accommodated by elastic and plastic δ strain ($\eta=\epsilon+\delta$). The latter is given by $\rho b\sin\beta\sin\alpha[6]$, where β is the angle between the interfacial plane and the slip plane of the dislocation and α is the angle between the Burgers vector and dislocation lines. Thus the measurement of ϵ in the epilayer allows estimating ρ .

The correlation between K_{eff} and ϵ is presented in Fig. 2. Both quantities increases in value for t_{Cu} < 1.8 nm and remain roughly constant above that value. This fact clearly indentifies a magnetoelastic term, proportional to $B_{eff}\epsilon$ (B_{eff} is the effective magnetoelastic stress), in the magnetic anisotropy energy.

References:

- [1] S. N. Piramanayagam J. Appl. Phys. **102** (2007) 011301.
- [2] S. S. Parkin, M. Hayashi, and L. Thomas, Science **320** (2008) 190...
- [3] D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D. Petit, and R. P. Cowburn, Science **309**, (2005) 011301.
- [4] M. T. Johnson, P. J. H. Bloemen, F. J. A. den Broeder and J. J. de Vries, Rep. Prog. Phys. **59**, (1996) 1409.
- [5] H. Traiible and A. Seeger, Z. Angew. Phys., **21**, (1966), 299.

[6] J. Y. Tsao, Materials Fundamentals of Molecular Beam Epitaxy Academic, New York, (1993), p. 164.

Figures:

