EXCHANGE BIAS IN INVERTED ANTIFERROMAGNETIC-CORE|FERRIMAGNETIC-SHELL NANOPARTICLES M. Estrader¹, A. López-Ortega¹, G. Salazar-Alvarez^{1,2}, D. Tobia³, E. Winkler³, S. Estradé⁴, I. Golosovsky⁵, J. Sort⁶, J. Arbiol⁴, F. Peiró⁴, S. Suriñach⁷, R.D. Zysler³, M.D. Baró⁷, J. Nogués⁸ ¹Centre d'Investigació en Nanociència i Nanotecnologia, Campus UAB, Bellaterra, Spain. ²Materials Chemistry Group, Dept. of Physical, Inorganic and Structural Chemistry, Arrhenius Laboratory, Stockholm Univ., Stockholm, Sweden. ³Centro Atomico Bariloche, S.C. de Bariloche, Argentina ⁴MIND-IN2UB, Departament d'Electrònica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain ⁵St. Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg, Russia ⁶ICREA and Dept. de Física, Univ. Autònoma de Barcelona, Bellaterra, Spain. ⁷Departament de Física, Universitat Autònoma de Barcelona, Bellaterra, Spain. ⁸ICREA and Centre d'Investigació en Nanociència i Nanotecnologia, Campus UAB, Bellaterra, Spain. marta.estrader.icn@uab.cat (FM) Passivated ferromagnetic nanoparticles coated with the corresponding antiferromagnetic (AFM) oxide shell have been extensively investigated [1]. However, studies of core-shell nanoparticles with AFM cores are rather scarce [2]. Here we present the study of inverted AFM-core|FiM-shell systems (MnO|γ-Mn₂O₃ and FeO|Fe₃O₄) as opposed to the typical FM-core|AFM-shell obtained from oxidation of transition metal cores. The nanoparticles have been prepared by thermolysis of the corresponding metal organic salt leading to the AFM-core (MnO or FeO) which is passivated under air yielding to the corresponding FiM-shell (γ-Mn₂O₃ or Fe₃O₄) [2,3]. The dependence of the magnetic properties of core-shell nanoparticles as a function of the AFM core size are systematically addressed for the first time, in contrast to the archetypical FM metal-core|AFM metal oxide-shell configuration where the magnetic properties are usually studied as a function of the FM size. Narrowly size distributed MnO|Mn₃O₄ nanoparticles with different core sizes (2-20 nm) and fixed shell thickness (~3 nm) were synthesized. This system may be considered as *double inverted* since it is composed of a MnO-AFM core with $T_N = 122$ K and a γ -Mn₂O₃-FiM shell with $T_C = 39$ K (i.e., $T_C < T_N$, as opposed to conventional exchange biased systems). On the other hand, monodispersed 11nm FeO|Fe₃O₄ particles (Figure 1), with easily tuneable ratio between the core diameter and the shell thickness wereprepared by controlling the passivation conditions. In this case $T_C(\text{Fe}_3\text{O}_4) > T_N(\text{FeO})$, thus the system can be considered *single inverted*. The samples were characterized by means of X-ray and neutron diffraction, transmission electron microscopy, electron energy loss spectroscopy and magnetic measurements. In both systems the coupling at the AFM|FiM interface leads to strong exchange bias effects (e.g., large loop shift, H_E and coercivities, H_C) at low temperatures. Moreover, the magnetic properties depend in a complex way on the core and shell sizes. Interestingly, in both systems the temperature dependence of the exchange bias properties is mainly controlled by the counterpart with lowest critical temperature (γ -Mn₂O₃ or FeO). ## **References:** - [1] J. Nogués, et al. Phys. Rep. 422 (2005) 65. - [2] G. Salazar-Álvarez, et al. J. Am. Chem. Soc. 129 (2007) 9102. - [3] A. E. Berkowitz, et al. Phys. Rev. B. **77** (2008) 024403; A. E. Berkowitz, et al. J. Phys. D. **41** (2008) 134007; I. Djerdj, et al. J. Phys. Chem. C. **111** (2007) 3641; D. W. Kavich, et al. Phys. Rev. B. **78** (2008) 174414. ## Figures: **Figure 1**: (a) HRTEM image of $FeO|Fe_3O_4$ core-shell nanoparticle. (b) XRD diffractogram of $FeO|Fe_3O_4$ core-shell particle. The lines below show the position of the reflections corresponding to cubic Fe_3O_4 phase.