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Recent discovery of perfect two-dimensional crystals [1] revealed a new way for 
obtaining the strong materials. The conventional wisdom dictates that the rise in a material 
hardness can be achieved by the increase in the internal energy density by transition to the high 
mass density phase state with shorter bond length under high pressure-temperature conditions. 
In 2D crystals the transition to high modulus state occurs in seemingly counter-intuitive way by 
the diminishing the effective volume per atom due to decrease in the layer thickness down to 
atomic level, the natural limit of compressibility. It appeared that stiffness of graphene is higher 
than that of diamond [2]. More than decade ago it was demonstrated that the Young modulus of 
graphitc monolayer exceeds that for bulk graphite [3]. Simultaneously the modulus of carbon 
nanotube then was obtained as that for the rolled-up monolayer in agreement with experiments 
[4]. 

 
In what follows the Young (bulk) modulus of a graphitic monolayer is derived from the semi-
empirical inter-atomic pseudo-potential for covalently bounded 2D carbon with new 
experimental evidence taken into account [1,2]. The bulk modulus of a monolayer expresses in 
a general form through the cohesive energy and effective volume per atom. The extreme 
stiffness of a monolayer relates to the absence of defects, high cohesive energy and to the 
minimum effective volume per atom in 2D crystal. I also discuss how this approach applies to 
the mechanical properties of 2D crystals in general. 

It is well known that the linear elasticity predicts well the elastic properties of fullerenes 
and carbon nanotubes in a good fit to MD calculations and experimental data. Here the 
modulus of a mono-atomic graphitic sheet is also calculated using the linear elasticity theory. 
In elasticity theory one can express the modulus through the thermodynamic parameters and 
the Poisson ratio. One can show that in deformation of a 2D monolayer the Poisson ratio is zero 
because an atom is incompressible under the force much smaller of atomic forces. Thus for 2D 
monolayer the homogenous (bulk) modulus, K, expresses through the internal energy, U, and 
volume of a system similar to [5] but with different coefficients as the following: 
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Relation K = Y /3 now connects the bulk and the Young modulii in 2D layer. One can 
describe in-plane inter-atomic interactions by the simplified semi-empirical pseudo-potential 
[6] assuming the homogeneity in two dimensions: 

φ = Ae−λ1R − Be−λ2R  (2) 
The potential (2) reproduces the most important parameters of 2D layer such as inter-atomic 
distance, R0, and the binding (cohesive) energy, εb, in equilibrium through the condition 
∂φ /∂R( )R= R0

= 0. A molecular volume is presented in the form V = V0N , whereV  is 
volume per atom, N is the number of atoms in a structure, R

0 = hR0
2

0 is in-plane inter-atomic distance 
in equilibrium and h is the effective “thickness” of monolayer that should be extracted from 
experiment [2]. The total internal energy of a system in equilibrium is U = φ R0( )N . Now the 
Young’s modulus of a single monolayer expresses through repulsive and attractive gradient 
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space scales of the potential, the cohesive energy and through the effective “thickness” of 
monolayer in the following form: 

Ymono =
λ1λ2 εbind

2h
   (3) 

The physical meaning of (3) is obvious: the Young modulus directly relates to the 
internal energy density in the characteristic atomic volume. The Young modulus for any 2D 
crystal with in-plane isotropic properties and known potential can be calculated by formula (3). 

Let us apply formula (3) for calculation the Young modulus of graphene taking the 
following parameters for the potential: A = 1,753.438 eV, B = 452.2 eV, λ1 = 3.488 Å-1 , λ2 = 
2.2 Å-1 [6] . Then the binding energy, εbind  = - 7.56 eV is close to the experimentally measured 
value for graphite. Taking h ~ 2.5- 4 Å from [2] one can calculate the Young’s modulus of a 
defectless mono-atomic graphite sheet, graphene, as Ymono = (1.856-1.16 TPa). One can see that 
the minimum value is just a little bit higher than that for graphite, c11=1.06 TPa in a direction 
while the maximum value exceeds that for diamond (0.9-1.25 TPa) [7].  

One can see that the effective thickness of a monolayer is a crucial parameter defining 
the strength of 2D crystal. The covalent diameter of carbon of 1.54 Å perhaps gives the upper 
theoretical limit of the monolayer “thickness” and therefore upper limit for the Young modulus 
of 2D carbon of 3TPa. Hopefully future smart experiments allow the direct measurement of the 
graphine Young modulus.  
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