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Recently, magnetic properties for molecular magnets and atomic spins have been ex-

tensively studied toward the development of ultimate microscopic elements for mass-storage

devices and quantum information devices [1-3]. In the field of data storage, quantum spin

systems with bistable states, which contribute to 1 bit of information storage, are expected

to be an ideal memory element. A typical energy producing the bistable states is a uniaxial

anisotropy energy, −|D|S2
z , with D being the uniaxial anisotropy constant. Materials with

such an energy are Mn12 of S=10 [4] with |D|=0.06 meV and a single Fe atom on a CuN

surface of S=2 with |D|�1.55 meV [1]. In particular, this Fe atom may have the potential

of a single atomic memory.

Regarding the spin system with −|D|S2
z , it is known that the spin relaxation has a

strong influence on the spin switching time (i.e., the writing time of data), and so on [3].

An origin of the spin relaxation is considered to be the spin-atomic vibration interaction

VSA, because the atomic vibration energy is usually in the range of 0.041 meV - 41 meV

(1010 s−1 - 1013 s−1) which is comparable to energy-level spacings of spin systems. To our

knowledge, however, the concrete expression of VSA has not been reported so far.

In this paper, we derived VSA and the spin-flip Hamiltonian VSF of a single atomic

spin in the crystal field, using the perturbation theory for the spin-orbit (SO) interaction

in which the difference of displacement between the nucleus and the electron, Δ�r, is taken

into account (see Fig. 1). For the case of Fe2+, we investigated the presence or absence of

VSA and VSF for any parameter sets. In addition, the magnitude of their coefficients was

roughly estimated.

The perturbation energy for the SO interaction is obtained as, V = VA + VSA + VSF ,

with

VA = DS2
z + E(S2

x − S2
y), (1)

VSA =
∑

μ,ν=x,y,z

Sμ

(
Λ(1)

μ,νaν + Λ(2)
μ,νa

†
ν

)
+

∑
μ,ν,ξ=x,y,z

SμSν

(
Λ

(1)
μ,ν,ξaξ + Λ

(2)
μ,ν,ξa

†
ξ

)
, (2)

VSF =
∑

μ,ν=x,y,z

Γμ,νSμSν . (3)

Here, VA is the so-called anisotropy spin Hamiltonian [5], where E is the biaxial anisotropy

constant. The operator Sμ is the spin operator in the direction of μ, and a†
ν (aν) is the

creation (annihilation) operator of the atomic vibration in the direction of ν. The coefficients

Λ(i)
μ,ν , Λ

(i)
μ,ν,ξ, and Γμ,ν contain the matrix element of the orbital angular momentum, and so

on.

We now focus on Fe2+ (3d6) in a crystal field of the tetragonal symmetry. In this

case we consider only one down-spin electron because the up-spin shell is filled. The above-
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mentioned coefficients are therefore calculated by using the following orbital state:

|φi〉 = Ci

⎛
⎝|di〉 +

∑
dj(�=di)

c
(i)
dj
|dj〉 +

∑
p

c(i)
p |p〉

⎞
⎠ , (4)

with Ci=(1 +
∑

dj(�=di) |c(i)
dj
|2 +

∑
p |c(i)

p |2)−1/2, |c(i)
dj
|2�1, and |c(i)

p |2�1, where the energy level

for |φi〉 is written as Ei. Here, |di〉 is the dominant d orbital, while |dj〉 and |p〉 are the

other d orbital and the p orbital in the atom, respectively. Owing to the d-d and d-p

hybridizations in the atom, |dj〉 and |p〉 are included in |φi〉. The hybridizations originate

from, for example, the mixing of atomic orbitals via the surrounding ions.

On the basis of expressions of the coefficients, we investigate the presence or absence

of VSA and VSF , where c
(i)
dj

=cd and c(i)
p =cp are set (see Table 1). The interaction VSA exists

for Δ�r �=0 and cp �=0, although it vanishes for Δ�r=0. Namely, the d-p hybridizations as well

as Δ�r �=0 play an important role in the presence of VSA. On the other hand, VSF is present

for cd �=0 even when Δ�r=0. The d-d hybridization is essential for the presence of VSF .

When |Δ�r|/|Δ�rn|=0.5, cd=cp, and
∑

d |cd|2 +
∑

p |cp|2=0.2 are set, where Δ�rn is the

displacement of the nucleus, we estimate the magnitude of the coefficients of VSA and VSF

as follows: The largest coefficient of VSF divided by |D| is 0.2, while that of the second term

of VSA divided by |D| is 0.1. Also, the largest coefficient of the first term of VSA divided by

|λ| is less than 10−4, where λ is the SO interaction constant.
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Fig. 1 : Positions and displacements of the nucleus
(large circle) and the electron (small circle). The
difference of displacement between the nucleus and
the electron is given by Δr=Δ�re − Δ�rn, where Δ�rn

is the displacement of the nucleus, and Δ�re is that
of the electron. In addition, �R is the position vector
of the electron measured from the nucleus.

Tabel 1 : The presence or absence of VSA and VSF

for each set of Δ�r, cd, cp. The presence and absence
are represented by © and ×, respectively.

VSA VSF

Δ�r=0 cd=0, cp=0 × ×
cd=0, cp �=0 × ×
cd �=0, cp=0 × ©
cd �=0, cp �=0 × ©

Δ�r �=0 cd=0, cp=0 × ×
cd=0, cp �=0 © ×
cd �=0, cp=0 × ©
cd �=0, cp �=0 © ©
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