Spin-atomic vibration interaction and spin-flip Hamiltonian of a single atomic spin

Satoshi Kokado¹, Kikuo Harigaya², and Akimasa Sakuma³
¹Faculty of Engineering, Shizuoka University, Hamamatsu, Japan
²Nanotechnology Research Institute, AIST, Tsukuba, Japan
³Graduate School of Engineering, Tohoku University, Sendai, Japan

tskokad@ipc.shizuoka.ac.jp

Recently, magnetic properties for molecular magnets and atomic spins have been extensively studied toward the development of ultimate microscopic elements for mass-storage devices and quantum information devices [1-3]. In the field of data storage, quantum spin systems with bistable states, which contribute to 1 bit of information storage, are expected to be an ideal memory element. A typical energy producing the bistable states is a uniaxial anisotropy energy, $-|D|S_z^2$, with D being the uniaxial anisotropy constant. Materials with such an energy are Mn_{12} of $S{=}10$ [4] with $|D|{=}0.06$ meV and a single Fe atom on a CuN surface of $S{=}2$ with $|D|{\simeq}1.55$ meV [1]. In particular, this Fe atom may have the potential of a single atomic memory.

Regarding the spin system with $-|D|S_z^2$, it is known that the spin relaxation has a strong influence on the spin switching time (i.e., the writing time of data), and so on [3]. An origin of the spin relaxation is considered to be the spin-atomic vibration interaction V_{SA} , because the atomic vibration energy is usually in the range of 0.041 meV - 41 meV ($10^{10} \text{ s}^{-1} - 10^{13} \text{ s}^{-1}$) which is comparable to energy-level spacings of spin systems. To our knowledge, however, the concrete expression of V_{SA} has not been reported so far.

In this paper, we derived V_{SA} and the spin-flip Hamiltonian V_{SF} of a single atomic spin in the crystal field, using the perturbation theory for the spin-orbit (SO) interaction in which the difference of displacement between the nucleus and the electron, $\Delta \vec{r}$, is taken into account (see Fig. 1). For the case of Fe²⁺, we investigated the presence or absence of V_{SA} and V_{SF} for any parameter sets. In addition, the magnitude of their coefficients was roughly estimated.

The perturbation energy for the SO interaction is obtained as, $V = V_A + V_{SA} + V_{SF}$, with

$$V_A = DS_z^2 + E(S_x^2 - S_y^2), (1)$$

$$V_{SA} = \sum_{\mu,\nu=x,y,z} S_{\mu} \left(\Lambda_{\mu,\nu}^{(1)} a_{\nu} + \Lambda_{\mu,\nu}^{(2)} a_{\nu}^{\dagger} \right) + \sum_{\mu,\nu,\xi=x,y,z} S_{\mu} S_{\nu} \left(\Lambda_{\mu,\nu,\xi}^{(1)} a_{\xi} + \Lambda_{\mu,\nu,\xi}^{(2)} a_{\xi}^{\dagger} \right), \tag{2}$$

$$V_{SF} = \sum_{\mu,\nu=x,y,z} \Gamma_{\mu,\nu} S_{\mu} S_{\nu}. \tag{3}$$

Here, V_A is the so-called anisotropy spin Hamiltonian [5], where E is the biaxial anisotropy constant. The operator S_{μ} is the spin operator in the direction of μ , and a_{ν}^{\dagger} (a_{ν}) is the creation (annihilation) operator of the atomic vibration in the direction of ν . The coefficients $\Lambda_{\mu,\nu}^{(i)}$, $\Lambda_{\mu,\nu,\xi}^{(i)}$, and $\Gamma_{\mu,\nu}$ contain the matrix element of the orbital angular momentum, and so on.

We now focus on Fe^{2+} (3d⁶) in a crystal field of the tetragonal symmetry. In this case we consider only one down-spin electron because the up-spin shell is filled. The above-

mentioned coefficients are therefore calculated by using the following orbital state:

$$|\phi_i\rangle = C_i \left(|d_i\rangle + \sum_{d_j(\neq d_i)} c_{d_j}^{(i)} |d_j\rangle + \sum_p c_p^{(i)} |p\rangle \right), \tag{4}$$

with $C_i = (1 + \sum_{d_j(\neq d_i)} |c_{d_j}^{(i)}|^2 + \sum_p |c_p^{(i)}|^2)^{-1/2}$, $|c_{d_j}^{(i)}|^2 \ll 1$, and $|c_p^{(i)}|^2 \ll 1$, where the energy level for $|\phi_i\rangle$ is written as E_i . Here, $|d_i\rangle$ is the dominant d orbital, while $|d_j\rangle$ and $|p\rangle$ are the other d orbital and the p orbital in the atom, respectively. Owing to the d-d and d-p hybridizations in the atom, $|d_j\rangle$ and $|p\rangle$ are included in $|\phi_i\rangle$. The hybridizations originate from, for example, the mixing of atomic orbitals via the surrounding ions.

On the basis of expressions of the coefficients, we investigate the presence or absence of V_{SA} and V_{SF} , where $c_{d_j}^{(i)} = c_d$ and $c_p^{(i)} = c_p$ are set (see Table 1). The interaction V_{SA} exists for $\Delta \vec{r} \neq 0$ and $c_p \neq 0$, although it vanishes for $\Delta \vec{r} = 0$. Namely, the d-p hybridizations as well as $\Delta \vec{r} \neq 0$ play an important role in the presence of V_{SA} . On the other hand, V_{SF} is present for $c_d \neq 0$ even when $\Delta \vec{r} = 0$. The d-d hybridization is essential for the presence of V_{SF} .

When $|\Delta \vec{r}|/|\Delta \vec{r}_n|=0.5$, $c_d=c_p$, and $\sum_d |c_d|^2 + \sum_p |c_p|^2=0.2$ are set, where $\Delta \vec{r}_n$ is the displacement of the nucleus, we estimate the magnitude of the coefficients of V_{SA} and V_{SF} as follows: The largest coefficient of V_{SF} divided by |D| is 0.2, while that of the second term of V_{SA} divided by |D| is 0.1. Also, the largest coefficient of the first term of V_{SA} divided by $|\lambda|$ is less than 10^{-4} , where λ is the SO interaction constant.

References:

- C. F. Hirjibehedin, C.-Y. Lin, A. F. Otte, M. Ternes, C. P. Lutz, B. A. Jones, A. J. Heinrich, Science 317 (2007) 1199.
- [2] S. Kokado, K. Ueda, K. Harigaya, and A. Sakuma, Phys. Rev. B 76 (2007) 054451.
- [3] S. Kokado, K. Harigaya, and A. Sakuma, phys. stat. solidi (c), in press.
- [4] A. Caneschi, D. Gatteschi, and R. Sessoli, J. Am. Chem. Soc. 113 (1991) 5873.
- [5] K. Yosida, Theory of Magnetism (Springer Series, New York, 1998) chap. 3.

Figure and Table:

Fig. 1 : Positions and displacements of the nucleus (large circle) and the electron (small circle). The difference of displacement between the nucleus and the electron is given by $\Delta r = \Delta \vec{r_e} - \Delta \vec{r_n}$, where $\Delta \vec{r_n}$ is the displacement of the nucleus, and $\Delta \vec{r_e}$ is that of the electron. In addition, \vec{R} is the position vector of the electron measured from the nucleus.

Tabel 1: The presence or absence of V_{SA} and V_{SF} for each set of $\Delta \vec{r}$, c_d , c_p . The presence and absence are represented by \bigcirc and \times , respectively.

		V_{SA}	V_{SF}
$\Delta \vec{r} = 0$	$c_d = 0, c_p = 0$	×	×
	$c_d = 0, c_p \neq 0$	×	×
	$c_d \neq 0, c_p = 0$	×	\bigcirc
	$c_d \neq 0, c_p \neq 0$	×	\bigcirc
$\Delta \vec{r} \neq 0$	$c_d = 0, c_p = 0$	×	×
	$c_d = 0, c_p \neq 0$	\bigcirc	×
	$c_d \neq 0, c_p = 0$	×	\bigcirc
	$c_d \neq 0, c_p \neq 0$	\bigcirc	\bigcirc