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Introduction: 
For not highly doped or undoped source/drain regions, CNTFET Schottky barriers (SB) are 

formed between the metal contacts and the semiconducting carbon nanotube at source/drain 
(S/D). Under these conditions, the source and drain current is affected by tunnelling 
mechanisms through these barriers. By changing the gate voltage (figure 1), energy bands are 
shifted which modulates the SB transmission function and subsequently the transistor current. 
In this work, we focus on the self-consistent analytical modeling of SB-CNFET. Self-consistent 
means that the effect of the injected charge (current) in the channel on the band bending and 
consequently on the drain current is taken into account. In section II, the physics-based 
analytical model for the channel charge in the SB-CNTFET is presented. Section III gives the 
drain-source current formulation and finally, a comparison between the Current-Voltage 
characteristics of the SB model and a MOS-like simulated CNTFET is performed. 

Formulation of the intrinsic nanotube charge: 
In the SB-CNTFET, the linear charge density nCNT results from the product of the Fermi-

Dirac (FD) distribution f(E) times the density of states g(E) times the source-drain transmission 
function TT(E). This later describes the transparency of the SB at the source/CNT or 
CNT/Drain interfaces, over the carrier energy range: 
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with E0 being the mid-gap energy of the intrinsic region. The integral (1) has no direct 
analytical solution. Hence, an approximation of the transmission function is proposed in this 
work according to the assumption published in [1]. This approximation consists in solving 
analytically the 1D modified Poisson equation for the channel potential which leads to calculate 
an effective SB height. Hence, considering the approximations on the effective SB height and 
assuming a 1D density of states relation, the linear density of charge in the source writes as: 

dE

Tk
eVEsbbdE

eDn

B

eff
SBp

eff
SB

SCNT

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −Φ+
+

×
−Φ+

= ∫
+∞

exp1

11

0 ][

0,
 

(2)

Since this integral has no analytical solution over the whole potential V and carrier energy E 
ranges, partial solutions have been considered according to the Fermi distribution and the 
density of state relative variation. 

Partial analytical solutions calculation  
At low gate bias conditions, the FD distribution is considered as an exponential function in 

the energy range of interest which leads to the following analytical solution of the integral [2]. 
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At high bias, an additional energy bound Δ is required to solve (2) in order to separate the 
energy range where the FD distribution is nearly constant and the energy range where the FD 
distribution behaves as an exponential function. Then, the linear charge density is written: 
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i) Low energy: For an energy range from ΦSB
eff to ∆, the FD distribution variation evolves 

weakly compared with g(E). Thus, it can be expanded in a Taylor series around E=sbbd[p] and 
the linear density of charge becomes: 
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ii) High energy: For an energy range from Δ to +∞, g(E) is considered as constant and equal to 
g(Δ) and the exponential approximation is used for the Fermi distribution. The analytical 
expression of the linear density of charge is then straightforwardly obtained as: 
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Finally, for model convergence issues, a smoothing function, fSMO is used to obtain a complete 
solution [3]. Figure 2 shows the good agreement between the complete analytical charge model 
result and the numerical solution over a wide range of the SB height and gate voltage. 
Formulation of the drain current: 
The current through the structure is calculated by means of the Landauer–Buttiker formula 
assuming a one dimensional ballistic channel in between the SB. Hence, after integration over 
energy and for all the energy sub-bands, the drain-source current is expressed as [4]:   
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where the calculation of sbbd[p] is consistent with the general expression of energy dispersion.  
Figure 3 shows the IV-characteristics of the SB-CNTFET model (ΦSB=0.5eV) in comparison 
with simulation results for a MOS like CNTFET according to drain voltage: (i) SB’s limit by a 
factor of 2 the drain-to-source current and (ii) shift the gate threshold voltage. Further 
developments are in progress to evaluate SB’s impact on dynamic performances. 

Conclusion 
An analytical physics based compact model for Schottky barrier CNTFET has been developed 
and implemented in a SPICE like simulation environment. It has been shown the SB affect 
strongly the I(V) characteristics of the transistor. Small signal simulation will be performed to 
benchmark SB-CNTFET with respect high frequency performance. 
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Fig 1. SB-CNTFET structure in 

back gate configuration with first 
conduction and valence sub-energy 

band profiles for VGS>VDS
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Fig 2. Linear channel charge density 
[normalized by eD0=8e/(3πbVppΠ)] 

at 300K, as a function of the 
potential V for different ΦSB. Dots 
are numerical calculation and lines 

are analytical solution. 
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Fig 3. IDS as a function of the VGS 
bias for 5 drain biases ranging from 
0 to 0.2V by a step of 25mV. Dots 

are for MOS-like CNTFET and 
lines are for SB-CNTFET analytical 

model with ΦSB=0.5eV. 
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