Surface modified Li_{1.05}Ni_{0.35}Co_{0.25}Mn_{0.4}O₂ cathode material by using nano particle coating for lithium secondary battery

J.T. Son

Department of Nano Polymer Science and Engineering, Chungju National University, Chungju 380-702, Republic of Korea

Jt1234@cjnu.ac.kr

In this study, nano-crystallized LiCoO₂ was coated on the surface of Li_{1.05}Ni_{0.35}Co_{0.25} Mn_{0.4}O₂ powders via sol-gel method. The influence of coated Li_{1.05}Ni_{0.35}Co_{0.25}Mn_{0.4}O₂ electrochemical behavior was discussed. The surface morphology characterization was achieved by transmission electron microscopy (TEM). Nanocrystallized LiCoO₂ was clearly observed on the surfaces of Li_{1.05}Ni_{0.35}Co_{0.25}Mn_{0.4}O₂. The phase and structural change of the cathode materials before and after coating were revealed by X-ray diffraction spectroscopy (XRD). It showed that LiCoO₂ coated Li_{1.05}Ni_{0.35}Co_{0.25}Mn_{0.4}O₂ cathode exhibited distinct surface morphology and lattice constants. Fig.1. of Cyclic voltammertry (2.8-4.6 V) shows that the characteristic voltage transition on cycling exhibited by the bare compound are suppressed by 7 wt% LiCoO₂ coating. This behavior implies that LiCoO₂ prevent structural change of Li_{1.05}Ni_{0.35}Co_{0.25}Mn_{0.4}O₂ or reaction with electrolyte on cycling. In addition, LiCoO₂ coated Li_{1.05}Ni_{0.35}Co_{0.25}Mn_{0.4}O₂ compound highly improves rate capability, one of the important battery performances, by varying discharge current at 0.1 - 4.0C rate. From these characteristics correlation between of Li_{1.05}Ni_{0.35}Co_{0.25}Mn_{0.4}O₂, the role of LiCoO₂ coating played on the electrochemical performance of Li_{1.05}Ni_{0.35}Co_{0.25}Mn_{0.4}O₂ was probed.

Key words: Cathode material; $Li_{1.05}Ni_{0.35}Co_{0.25}Mn_{0.4}O_2$; sol-gel coating; $LiCoO_2$; Lithium ion battery

*Corresponding author; jt1234@cjnu.ac.kr (Jong-Tae. Son)

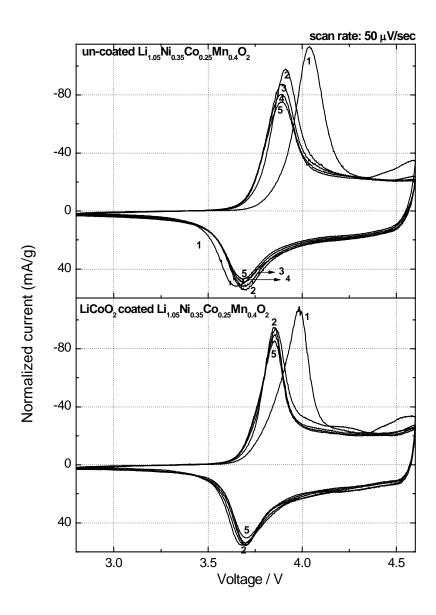


Fig. 1. Cyclic voltammertry of the bare and 7.0 wt. % $LiCoO_2$ oxide(nanoparticle) coated $Li_{1.05}Ni_{0.35}Co_{0.25}Mn_{0.4}O_2$ cell between 2.8 and 4.6 V at a scan rate of 50 $\,$ s⁻¹.