

Exchange bias in core/shell magnetic nanoparticles: experimental results and numerical simulations

Xavier Batlle, A. Labarta, Ò. Iglesias, M. García del Muro and M. Kovylina

Goup of Magnetic Nanomaterials Institute of Nanoscience and Nanotechnology University of Barcelona (UB)

I. Motivation

- Magnetic nanoparticles
- Why interesting? Size effects (1940s):
 - enhanced properties with respect to bulk
 - finite size and surface effects + interactions (dipolar)

Feature size \leq correlation length

Exchange length, domain wall width and single domain radius

- Why useful? Technological applications:
 - Magnetic recording
 - Biomedical applications

Magnetic recording vs biomedical applications

The superparamagnetic limit: thermal fluctuations overcome the magnetic anisotropy barrier

$$t = t_0 e^{K_u V/kT}$$

Magnetic recording (t \approx 10 years) With the increase in recording density (reduction in volume), we need to keep the magnetic stability (patterned media, high anisotropy materials, exchange bias...)

Requirements for bio-applications (typically)

Superparamagnetic behavior
High magnetization
Limiting size *(in vivo)*Biocompatibility and functionality

II. Magnetic nanoparticles:Finite-size, surface effects and collective behavior

Review Papers

Finite size effects in fine particles: magnetic and transport propertiesX. Batlle and A. Labarta,Journal of Physics D: Applied Physics 35, R15 (2002)

From finite-size and surface effects to glassy behaviour in ferrimagnetic nanoparticles

O. Iglesias, X. Batlle and A. Labarta

Surface effects in magnetic nanoparticles; D. Fiorani Editor; Springer (2006)

Incubation with HeLa cells

Contrast enhancement M.P. Morales et al., (submitted) UB

Internalization around the cell membrane

III. Exchange bias: A (very short) survey

Review Paper

Exchange bias phenomenology and models of core/shell nanoparticles O. Iglesias, A. Labarta and X. Batlle Journal of Nanosciences and Nanotechnology **8**, 2761 (2008)

Reminder

 Exchange bias: unidirectional anisotropy induced by the AF into the FM via exchange coupling at the interface
 M(H) after field cooling T_N<T<T_C

50

Reference spin state (read heads, MRAM and magnetic sensors)

$$H_{EB} = n \frac{JS_{AF}S_{FM}}{t_{FM}M_{FM}}$$

n ?

 Uncompensated (3 – 7%) pinned spins in the AF, either at the interface or far from it.
 Ohldag, PRL 91, 017203 (2003)
 Kappenberger, PRL 91, 267202 (2003)
 Roy, PRL 95, 047201 (2005) UB

2. Asymmetric reversal due to broken symmetry, leading to *in-volume* domains in the FM.

Li, PRL **96**, 217205 (2003) **UB** Morales, APL **89**, 072504 (2006); **95** (2009) **UB**

 Key role of relative size of *in-plane* FM/AF domains Roshchin, EPL **71**, 297 (2005) UB Petracic, APL **87**, 222509 (2005) UB

Phenomenology in core/shell NP

Shifted loops, Increased blocking temperature increased H_c (spin dragging) (strongly dependent on coverage) FC 2.5 5 Co_{core}CoO_{shell} in CoO 2,0 0.3 m_R (10-7 J T-1) μ₀Η_C (Π) 0 1,5 0.2 ZFC 1,0 Co/CoO 0.1 -5-0,5 Co_{core}CoO_{shell} in Al₂O₂ 200 300 100 Skumryev, Nature 423, 850 (2003) T (K) μ₀Η (T)

Oxidation state (FM-AF ratio)

Gangopadhya, JAP 73, 6964 (1993)

IV. Results: EB in Co-CoO nanoparticles embedded in a matrix

M. Kovylina, M. García del Muro, Z. Konstantinović, O. Iglesias M. Varela, A. Labarta and X. Batlle,

Nanotechnology 20, 175702 (2009)

$Co_x-(ZrO_2)_{1-x}$ thin films by pulsed laser ablation

V. Results: Monte Carlo simulations

References

Òscar Iglesias

18:45 (Today)

O. Iglesias, X. Batlle and A. Labarta, Phys. Rev. B 72, 212401 (2005)
J. Magn. Magn. Mater. 316, 140-142 (2007)
J. Phys.: Condens. Matter 19, 406232 (2007)
J. Phys. D: Appl. Phys 41, 134010 (2008)

Exchange bias phenomenology and models of core/shell nanoparticles O. Iglesias, A. Labarta and X. Batlle Journal of Nanosciences and Nanotechnology **8**, 2761 (2008) REVIEW

Model: single core/shell NP (to avoid collective effects)

Shell: antiferromagnetic (oxide)

Interface: spins at C (Sh) with

nearest neighbors at the Sh (C)

In a core/shell particle, the interface is not well-defined as in bilayers and finite-size effects appear

Interface incorporates roughness, disorder and local compensation/non-compensation (number of neighbors depend on position)

Co/CoO

 Fe/γ - Fe_2O_3

N_{Core} = 3071, N_{Shell} = 2504

N_{Interface} = 918 (Shell) + 794 (Core)

$$H/k_{B} = -\sum_{\langle i,j \rangle} J_{ij} \vec{S}_{i} \cdot \vec{S}_{j} - \sum_{i} K_{i} \left(\vec{S}_{i} \cdot \hat{n}_{i} \right)^{2} - \vec{h} \cdot \sum_{i} \vec{S}_{i}$$

Monte Carlo simulation, Metropolis algorithm for continuous spins S_i = Heisenberg Spins in simple cubic lattice

Simulation parameters (all in temperature units)			
J _C = 10 (fixed)	Fixes Curie temp.	K _C = 1	Fixes coercive field of
	T _c = 29	(per site)	FM
J _s = -0.5 J _c	Fixes Neél temp.	K _s = 10	Shell with high
	T _N = 14.5 < T _C	(per site)	anisotropy

O. Iglesias, X. Batlle and A. Labarta, J. Phys. D **41**, 134010 (2008)

dependence on particle size **h**_{eb} decreases as size increases (experiments)

Oscillatory

 $h_{eb} \sim 1/R_{Core}$

The net magnetization of the AF shell spins at interface oscillates with particle size

Small changes in the core radius induce different geometric arrangements of interfacial shell spins, due to the intersection of the sphere with the lattice sites

Field cooling dependence

O. Iglesias, X. Batlle and A. Labarta,J. Phys. D 41, 134010 (2008)

h_{eb} decreases as the cooling field increases (as in experiments)

The increasing cooling field progressively reverses the interfacial shell spins along the field direction (as in *positive* EB), reducing the exchange field on the FM The loops become more symmetric

Conclusions

- 1. EB effects and glassy behavior are difficult to decouple.
- 2. Core/shell NPs naturally incorporate roughness and non-compensation at the interface.
- 3. EB in core/shell Co-CoO can be tuned as a function of the oxygen pressure.
- 4. Atomistic Monte Carlo simulations can be used to study finite-size and surface effects at the microscopic level.
- 5. Simulations of a model of core/shell NP unveils and quantifies the microscopic origin of EB: loop shift is due to the exchange field acting on the particle core, generated by the net magnetization of uncompensated, pinned shell spins at the interface.
- 6. EB-related phenomenology such as particle size, shell thickness, shell anisotropy, cooling field and interface coupling dependences, together with loop asymmetry, reversal mechanisms and vertical shift, are successfully accounted for by the results of the simulation.