

Nanoparticle Reactivity

10 September 2009 TNT 2009 - Trends in NanoTechnology

Dr. Michael R. Berman

Aerospace, Chemical, & Material Sciences Air Force Office of Scientific Research

DISTRIBUTION A: Approved for public release; distribution unlimited.

Some Factors Affecting Nanoparticle Reactivity

- Composition
- Morphology
- Electronic structure
- Geometry
- Spin
- Defects
- Size
- Fluxionality

- Diffusion
- Electric Fields
- Crystal Face
- Adsorbates
- Interactions with neighbors
- Substrate interactions

Aluminum Nanoparticles

Oxidation: $2 \text{ AI} + 3/2 \text{ O}_2 \rightarrow \text{Al}_2 \text{ O}_3$ Melting T:660 °C2054 °C

Oxidation of Laser Heated Aluminum Nanoparticle

Shell Broken 🔰 **Oxidation Reaction** Expansion

Crystalline AI_2O_3 shell, 4 nm thick 48 nm Al core

Vashishta, Kalia, Nakano; USC

Amorphous Al₂O₃ shell, 4 nm thick 48 nm Al core

Crystalline and Amorphous Nanoshell Explosion

Reactions of Aluminum Clusters/Nanoparticles

Castleman, Penn. St; Khanna, VCU

Effect of Spin on Reactivity

- Odd electron clusters (even number of aluminum atoms) react instantaneously.
- Even electron clusters show variable reactivity with Al₁₃⁻ and Al₂₃⁻ resisting etching.
- O₂ is spin triplet and its spin must transfer to metal cluster for strong reaction
- Spin Accommodation Energy affects reactivity; energy required to excite even electron clusters to spin triplet to accommodate spin

 AI_{13}^{-} has high spin excitation energy. Spin (blue region) remains on O_2 ; Etching resistant.

Khanna, Castleman and co-workers; J. Amer. Chem. Soc. **129** 16098 (2007); ₈ PNAS **104** 14565 (2007)

Superatoms and Periodicity

- Various clusters or "superatoms" display properties similar to those of elements in the periodic table.
- Stability is achieved by filling shells of electrons (in jellium model or other descriptions).
- Analogy provides model for how clusterassembled materials can be developed
- First cluster-assembled material prepared, K₃As₇

Al,-

• Aluminum + ice propellant – Yetter et al., others

Al,-

Selective reactivity of aluminum clusters

В

 Dissociative adsorption of water on aluminum cluster anions

Loss of H₂ for Al_n⁻

with n = 16-18

AI₁₇(OD)₂ Al₁₆D₂O⁻ ¹⁷(D₂O)₂ (OD)₂ ٨ Al₁₆(OD)₂ Al₁₇(OD) 16D20 Al₁₈(D₂O)₂ Intensity ^BD₂O Al₁₇D₂O 1₆(D₂O)₂ Æ Al 18 OD (D₂O)₂ Al₁₈D₂O D AI₁₈(OD)₂ AI 18 02 480 m/z 500 460 440 520 540

Al .-

Al_20

Al,-

Castleman, Penn St.

Some Aluminum Nanoparticles React with Water to Produce H₂

Reactivity (loss of H_2) seen for AI_n with n = 12, 16-18.

LUMO energies predict other clusters would react Active Sites

Castleman, Penn St. Khanna, VCU

Science 323, 492 (2009)

Water Adds to Specific Sites of the Al₁₇⁻ Cluster

Al₁₇ (showing LUMO) Al₁₇ + H₂O (dissociative adsorption) Al₁₇⁻ + 2H₂O (transition state)

New Lessons Learned about Cluster Reactivity

- Complementary active sites cause size-selective reactivity
 - Proximate Lewis acid and Lewis base sites
- Geometric factors are critical in determining reactivity
- Water split on Al clusters to form molecular hydrogen
 - Can the active cluster easily be regenerated?
- Do other OH-containing molecules react with Al_n?

Castleman, Penn St., Khanna, VCU; Science 323, 492 (2009)

Reactions of Methanol with Aluminum Clusters

- Methanol reactivity energetics very similar to water
- n = 12,16, 17,18 most reactive
- n = 11,13,20 least reactive
- Energetically favorable
- Adsorption of several methanol molecules seen

Reactions of Butanol with Aluminum Clusters

Al_n⁻(tert-Butanol)_m

- Passivates aluminum sites and tethers organic molecules to Al
- Future work: preserve aluminum clusters through steric hindrance of the surface active sites

AI (vapor) + HCI ---> AICI (vapor, then frozen) Li[P(t-Bu)₂] + AICI---> AI₄[P(t-Bu)₂]₆

Structure determined by X-Ray crystallography

AI₁₂(AIBr₂)₁₀ x 12 THF

Principles of Nanocatalysis

Dynamic Structural Fluxionality

 Rearrangement of cluster permits adsorption of O_2

Spectral Quantum Size Effect

- Cluster size affects energy levels
- Position of HOMO, LUMO, Fermi level
- Antibonding orbitals of O_2 below Fermi level and resonant with Au orbitals can weaken of bonding in adsorbate
- Impurity-Doping Modifications and Control
 - Control of position of orbitals with respect to Fermi level

Nanoparticle Catalyst in Photosystem II

Photosystem II oxidizes water in plants to produce molecular oxygen

Effects of adsorbates: weakening bonds Effects of substrates: charge donation

Electric Field Induced Nanocatalytic Activation of O₂

Electric Field Activation of Planar Gold Nanocatalyst

Phys. Rev. Lett. **100**, 056102 (2008)

Probing the Catalyst/Support Interface Using GISAXS

17

16

14

13

Cluster height (nm)

- In situ Grazing Incidence Small Angle X-ray Scattering
 Size-selected Ag clusters (few nm) catalyzing rxn of
 - propylene + O_2
 - New capability to probe catalyst/support interactions

reaction time

spherical particle

- flattening (decrease in height)
- change of wetting angle at the nanoparticle/support interface

Vajda, Argonne

Platinum Nanoclusters Catalyze Dehydrogenation of Propane

Pt₈₋₁₀ clusters on nanoporous anodized aluminum oxide membranes (AAO)

COx

Vajda, Argonne/Yale; Nature Materials, 2009

Catalytic Performance

- Conversion rate: up to 23%
- Turn over freq: 0.8 2.9 s-1 (x40-100 higher than prev.)
- First highly active and selective catalyst for oxidative propane dehydrogenation
- Stable catalyst; no sintering
- Calculations on Pt₄ and Pt₈ indicate preferential breaking of the C-H bond
- Endothermic fuels applications

Platinum Nanoclusters Catalyze **Dehydrogenation of Propane**

CO₂

16.3% CO

0%

Fischer-Tropsch Synthesis on Size-Selected Ni and Co Clusters

Relative activity (uncorrected)

Science 321, 1332 (2008)

Motivation:

- $(2n+1)H_2$ + nCO \rightarrow C_nH(2n+2) + nH₂O
- Primary catalyst: Co
- Particle size effect unclear (<2 nm)
- Design new class of catalytic mat'ls

Results:

- Small clusters are effective catalysts
- Composition: Ni > Co
- Size: $Co_{27} > Co_4$
- Support: Co_{27} on MgO > Co_{27} on Al₂O₃

A few very active sites dominate the process

Vajda, Argonne/Yale

Armchair SWNT Growth

DFTB/MD

26

Armchair SWNT Growth

Sidewall Annealing

Self-healing process of sidewall (annealing) Fe-Carbon mobility at interface important!

Trajectory 6: T_n = 1500 K, T_e = 10k K, C_{int} = 1500 K

Colloidal Inorganic Nanocrystals: Building Blocks for New Materials

Evolution of the Pore Structure: Cobalt Sulfide

0 sec

1 min

10 sec Add Sulfur

2 min

20 sec

30 min

Alivisatos, UC Berkeley

Some Factors Affecting Nanoparticle Reactivity

- Composition
- Morphology
- Electronic structure
- Geometry
- Spin
- Defects
- Size
- Fluxionality

- Diffusion
- Electric Fields
- Crystal Face
- Adsorbates
- Interactions with neighbors
- Substrate interactions