Wave-front Engineering of Light Sources using Metamaterials

Federico Capasso
School of Engineering and Applied Sciences
Harvard University
Cambridge MA

capasso@seas.harvard.edu

Barcelona, TNT 2009

Contributors in my group

Nanfang Yu

Jonathan Fan

Ertugrul Cubukcu

Romain Blanchard

Christian Pflügl

Jenny Smythe

Qijie Wang

Laurent Diehl

Jiming Bao

Collaborators

K. Crozier, E. Kort G. Whitesides, Q. Xu, M. Dickey Harvard University

T. Edamura, S. Furuta, M. Yamanishi, and H. Kan Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Japan

Near-field and far-field Engineering

The Challenge

Facet engineering of lasers and other light sources to achieve enhanced performance or new functionalities in the near-field and in the far-field:

"wavefront engineering"

Semiconductor lasers with "arbitrary" wavefront?

- High collimation
- Control of polarization
- Super focusing in the near-field and far-field
- Beam steering using a single device
- Bessel beams (no divergence)
- Beams with orbital angular momentum, etc.

The Approach

- Pattern plasmonic structures (metallic antennas, apertures, gratings, etc.) on the facet of semiconductor lasers and other optical components
- Plasmonics: Sub-wavelength control of the amplitude and phase of the optical near-field → the amplitude and phase of the far-field
- Development of new patterning techniques based on soft lithography

Surface plasmons

- > Surface electromagnetic waves coupled with surface charge oscilations
- > Bounded at and propagating along surface

Quantum Cascade Lasers: platform to demonstrate beam engineering

Main features:

- Huge wavelength coverage (mid-ir through far-ir: 3.0-300 μm) using same materials by controlling layer thickness: wavelength by design
- Very narrow emission linewidth (for DFB QCLs), 10⁻⁴-10⁻⁵ cm⁻¹
- Gain spectrum by design: Broadband (e.g. 1000-1300 cm⁻¹)
- High power, high temperature operation in the mid-ir (4.5 -12 μm)

Maturing technology

- High reliability and robustness
- QCL can be grown by MOVPE: standard semiconductor laser platform
- Hundreds of milliwatts of CW output at room temperature in mid-IR
- Increasing number of semiconductor foundries / companies growing QCLs

Beam Engineering in a Lighthouse

Fresnel lens

The divergence problem in semiconductor lasers

Beam divergence of semiconductor lasers: θ≈λ_w/L
 λ_w laser wavelength in the waveguide material
 L dimension of the waveguide core

1D Collimation in the Vertical Direction

Two ways of fabrication

Two designs equivalent in beam collimation and power throughput

Experiments: Original Devices

SEM images of the device facets

Device A $\lambda = 9.9 \mu m$

Measured far-field mode profiles

Device A Device B

Vertical beam divergence: ~60 deg

Simulations

Original laser

Experiments: Devices with 1D Plasmonic Collimators

Measured far-field mode profiles

Experiments: Line Scans of the Far-field Mode Profiles

2.6°

30

2.2°

30

Angle (degree)

20

10

Angle (degree)

1D Plasmonic collimators

Nature Photonics vol. 2, pp. 564-570 (2008)

2D Collimation: Design

2D Plasmonic Collimation: Original Device

SEM image of the laser facet

Measured far-field mode profile

Hamamatsu MOCVD-grown buried heterostructure device: λ=8.06 μm

FWHM divergence angles:

$$\theta_{\parallel}$$
=74° θ_{\parallel} =42°

Experiment: far-field mode profile (20 rings)

SEM image of a fabricated device (λ =8.06 μ m)

Aperture size $w_1 \times w_2$ (μm^2)	grating period A (µm)	groove width w (µm)	groove depth d (µm)	radius of the first groove r_I (μ m)
2.1×1.9	7.8	0.6	1.0	6.0

FWHM divergence angles:

 θ_{\perp} =2.7° (reduction by a factor of ~30) θ_{\parallel} =3.7° (reduction by a factor of ~10)

Semiconductor lasers producing small divergence beams in multiple directions

 $k_{sp}\Gamma_1$ = 2π gives constructive interference and reduced divergence normal to the facet $k_{sp}\Gamma_2$ + $k_{air}\Gamma_2\sin\theta$ = 2π gives constructive interference and reduced divergence in a direction θ with respect to the normal

Single-wavelength device emitting dual beams

 λ =8.06 μ m

The design can essential control the intensity and direction of the two beams coming from the two gratings by tuning grating periods and groove numbers.

Dual-wavelength device emitting dual beams

Measured far-field of the

Vertical line scans

Measured far-field of the λ =10.5 μ m component

$$\begin{array}{c|c} \mathbf{Exp} & k_{sp,\lambda_1} L_p + k_{1air} L_p \sin\theta_1 = 2\pi \\ \hline & k_{sp,\lambda_2} L_p + k_{2air} L_p \sin\theta_2 = 2\pi \end{array}$$

Solid lines: 9.3 μm Dotted lines: 10.5 μm

Plasmonic Polarizers: Motivation

Semiconductor lasers: linearly polarized

Conventional approaches of selecting and manipulating polarization:

- absorptive or beam-splitting polarizers
- wave plates

Light sources of a desired polarization are important for many applications:

- satellite communication (dual-polarization)
- chemistry (detection of chiral molecules: protein, DNA, etc.)
- quantum cryptography (multiple polarization state)

Circularly-polarized light sources: very difficult to achieve Spin-based semiconductor lasers

Plasmonics: a compact and technologically simpler approach for controlling the polarization state of light sources

N. Yu et al. *Applied Phys. Lett.* April 13, 2009

Polarization along θ Direction: Design, Fabrication, Imaging

Experiments: Linear-Polarization Direction along 45° Direction

Nanfang Yu, et al., Appl. Phys. Lett., 94, 151101 (2009)

Plasmonic polarizer for circular polarization

- d_1 - d_2 = $\lambda_{sp}/4 \rightarrow circular$ polarization
- d_1 - d_2 = $\lambda_{sp}/2$ \rightarrow polarization in the horizontal direction

Experiments

Nanfang Yu, et al., Appl. Phys. Lett., 94, 151101 (2009)

Future directions: improved designs

double-metal waveguide

Resonant optical antenna for ultra-intense nanospots

Plasmonic laser antennas: control of near field

Creation of intense $(0.1 - 1 \text{ GW/cm}^2)$ nanoscale spots in the near field

N. Yu et al. *Appl.Phys. Lett.* **91**, 173113 (2007)

Applications

- Possible applications include
 - ►high-density optical data storage (up to 1 TB/inch²)
 - high-resolution spatially resolved imaging and spectroscopy
 - nano-optical tweezers
 - > SERS based sensors

 Potential for circumventing the limitations of current near-field scanning optical microscopes and probes (e.g. low throughput)

 Applications such as manipulating and probing sub-cellular structures can take advantage of this nanoscale resolution to probe and quantify specific aspects of cell behavior and response to their environment

Plasmonic Optical Antenna Fiber Probe

E. Smythe et al. *Optics Express* **15**, 7439 (2007)

- detection/sensing of analytes in media By Surface Enhanced Raman Scattering
 - array geometry allows for tuning of the surface plasmon resonance

Metallic Structure Transfer Technique (Decal Tranfer) . J. Smythe et al. ACS Nano 3, 59 (2009)

Gold Nanorod Arrays on Fiber Facets

Unconventional Substrates and Arbitrary Patterns

Transfer of Gold Nanorod Arrays To Silica Microspheres

First Patterning of Silica Microspheres

Transfer of Arbitrary Metallic Patterns to Fiber

•1μm x 1μm gold squares, 40nm tall, separated by 9μm and 1μm

•Lines: 100nm wide. 40nm tall lines, 100μm long. Written and transferred as a continuous pattern

Split-ring resonators: Sides 420nm, 40nm tall, 000000000 line widths of 80nm, 60nm gap. Spaced by 480nm.

ima a a a a a a a a a a

SERS Measurements with Fiber Antenna Arrays

1,2-Bis(4-pyridyl)ethylene in methanol

Raman Shift (cm⁻¹)

E. J. Smythe, et al., Nano Lett. 9, 1132 (2009)

Nanoskiving of Plasmonic Nanostructures

Q. Xu et al. Nano Letters 7, 2800 (2007)

Qiaobing Xu G. Whitesides

> Large Area Patterning!

Transmission of Frequency Selective Surface

Q. Xu et al. *Nano Letters* 7, 2800 (2007)

Design of laser facets with negative index metamaterials

Negative index metal-dielectric materials may be directly applied to a laser and fiber facets to get super-focusing of output light

New patterning techniques needed to create "Smart Surfaces"

Recent review: Optics and Photonic News (May 2009)

