Non volatility and GHz magnetization dynamics in magneto-electronic devices, from memory to logic

IEF Orsay, "NanoSpinTronics" group (France)

C. Chappert, T. Devolder, J.-V. Kim, D. Ravelosona, J.-O. Klein, N. Vernier

+ P. Crozat (HF metrology @IEF)

with many PhD students: **A. Helmer, C. Burrows, P. Balestriere, Y. LeMaho, M. Nguyen Ngoc, L. Bianchini, W. Zhao …**

and post-docs: **H.-W. Schumacher, D. Stanescu, N. Lei, S. Park, …**

on work cited here:

Advanced Research Laboratory, Hitachi, Tokyo (Japan) J. Hayakawa, K. Ito, H. Takahashi *tunnel junctions fabrication, micromagnetic modelling*

HITACHI Inspire the Next

Laboratory for Nanoelectronics and Spintronics, RIEC-Tohoku University , Sendai (Japan) S. Ikeda, H. Ohno *magnetic tunnel junctions fabrication*

Hitachi Almaden (USA)

J.A. Katine, M.J. Carey, *spin valve nanopillars fabrication*

University of California, San Diego (USA)

E.E. Fullerton*spin valve films growth for DW studies*

LPS Orsay

J. Miltat, J. Ferré micromagnetic modelling, DW physics

etc…

NanoSciences

-90° 0° 90° 180° 270°

 $k_{\rm \it o}T$

 $>>$ $K_{B}^{}$

Damped precession **of the magnetization M around its equilibrium axis**

• **precession frequency: f = f0 Heff**

$$
f_0 = 28
$$
 MHz / mT $(= 2.8$ GHz / kOe)

• **magnetic energies** Î **effective field Heff**

• **the Landau-Lifshitz-Gilbert (LLG) equation**

$$
\frac{d\vec{M}}{dt} = -|\gamma|\mu_0 \left(\vec{M} \times \vec{H}_{\text{eff}}\right) + \frac{\alpha}{\|\vec{M}\|} \left(\vec{M} \times \frac{d\vec{M}}{dt}\right)
$$
\n
$$
\text{friction torque}
$$
\n(damping)

The necessary compromise in magnetic recording

Reading: The magnetic tunnel junction

Jullières 1973 ; Moodera 1995

a convenient device to integrate magnetic storage in CMOS electronics **→ the magnetic RAM**

Writing: Spin Transfer Torque switching

J. C. Slonczewski, JMMM 159, L1 (1996)

exchange interaction between the spin of conduction electrons and M

writing by a current density \rightarrow ~scalable

to "spin transfer" MRAM

SONY, IEDM Dec. 2005 ~ Freescale's MRAM (2006) HITACHI, ISSCC March 2007)

 \rightarrow simple " integrated " architecture, above CMOS technology,

 \rightarrow "write" driven by a current density, potential for :

• downscaling down to 20nm (Li et al., DATE'09 conf.)

• " moderately high " density (<10 F^2),

→ "fast " (10-100 ns) : main advantage of M-RAM versus other NV-RAM

TNT Barcelone - Sept. 2009 8 • but : more costly to fabricate (magnetic back end) and much less dense than Flash (soon 1.3 F² / bit !!!) or other new NV-RAM (PC-RAM, RRAM, …)

Tighter integration between logic and memories

slide © B. Dieny, Grenoble

With CMOS technology only:

Tighter integration between logic and memories

slide © B. Dieny, Grenoble

With CMOS technology only:

NanoSciences

With hybrid CMOS/magnetic:

Fast communication between logic and memory -numerous short vias-simpler interconnecting paths -Smaller occupancy on wafer - extended possibilities for programmation and reconfiguration -possibility to power-off unused CMOS blocks with instant-on restart

New paradigm for architecture of complex electronic circuit (microprocessors...)

Spin-RAM specifications "to be achieved"

- at low enough current/voltage compatible with CMOS
- will it be reliable ?

error rate should not be measurable for logic applications

Precession of the magnetization and spin transfer

.. old and new issues of magnetic storage …

© Y.

Speed: macrospin dynamics of spin transfer writing

The case of a platelet magnetized in plane: J.Sun, PRB 62, 570 (2000)

fast switching requires currents >> I_{SW}

+ trajectory ~ confined around the plane by dipolar shape anisotropy

Speed: macrospin dynamics of spin transfer writing

The case of a platelet magnetized in plane: J.Sun, PRB 62, 570 (2000)

- **1 – samples: spin valve Nanopillars**
	- J. Katine & M. Carrey, HGST San José

- **- PtMn17.5/CoFe1.8/Ru0.8/CoFe2/Cu3.5/CoFe1/NiFe1.8 (nm) - GMR~1.5%**
- **2 - experiment : send a series of same current pulses and measures the switching probablility**

Devolder et al., APL 88, 2006

Switching probability versus pulse parameters: (δt , I_{MAX}) in a spin valve nanopillar

 ns

Devolder et al., APL 88, 2006

Measurement on magnetic tunnel junctions

Set-up (complete with HF)

Sample response to a repetition of the same pulse ns (one color per pulse)

SINGLE-SHOT(time-resolved)

Na ILE

event-selected-averaged, time-resolved traces

NanoScience

MAIN OUTCOMES:

- \rightarrow **stochastic incubation delay.**
- → then fast switching (~300ps) proceeds through a reproducible trajectory
- → post-switching ringing: 1.4 GHz, damped in 1.5 ns

Vertically offset curves Horizontally offset curves

Experiment vs macrospin behaviour

Observed:

Expected

→ build up of oscillating behavior before switching, from a random start due to thermal excitation

Proposed interpretations

NON UNIFORM SWITCHING

A - stochastic incubation delay

→ highly non uniform local excitations

B - fast switching (~300ps) through a reproducible trajectory

C - post-switching ringing: 1.4 GHz, damped in 1.5 ns

MACROSPIN CALCULATION WITH TEMPERATURE AND FILED-LIKE TERM IN SPIN TRANSFER TORQUE

$$
\tau\!=\!a_J\mathbf{M}\times(\mathbf{M}\times\mathbf{m}_{\mathrm{P}})+b_J\mathbf{M}\times\mathbf{m}_{\mathrm{P}}
$$

TNT Barcelone - Sept. 2009 26 Garzon et al., PRB 2009

- **→** smaller devices give more coherent behaviour… but still k_BT !!!!
- **→** tilted initial angle between magnetizations of memory and reference layers

- **→** smaller devices give more coherent behaviour… but still k_BT !!!!
- **→** tilted initial angle between magnetizations of memory and reference layers

- **→** smaller devices give more coherent behaviour… but still k_BT !!!!
- **→ start a large angle precession at or before current pulse onset**

by changing the magnetic energy \rightarrow *H_{eff}*

Improved spin transfer dynamics for fast MRAM

- **→** smaller devices give more coherent behaviour… but still k_BT !!!!
- **→ start a large angle precession at or before current pulse onset**

by changing the magnetic energy \rightarrow *H_{eff}*

 \rightarrow **change the internal effective field !**

ex: coupling to a multiferroic layer + voltage

Ramesh et al. NatMat6, 21 (2007)

Also: strain, cf : Lee et al. APL82 (2003); Boukari et al., JAP 101 (2007) (on metals)

CONCLUSION

similar stochastic behaviour for DW depinning by current pulse *(*cf Moriya, Nat. Phys. 2008; C. Burrows, Nature Phys. in press,*)* **→** storage track memory (cf S. Parkin, this conference)

critical current for spin transfer switching still needs to be reduced (by 3 o 5) to ensure high density and scalability @ ~10ns R:W cycle → perp. magnetized materials (*E. Fullerton, this conf.*)

→ synthetic antiferromagn. free layer (*Hayakawa, Jpn. J. Appl. Phys 2006*)

speed potential maybe the major asset for MRAM, but assistance to spin transfer should be necessary to reach sub-ns switching

Ultrafast MRAM for "logic in memory":

a new paradigm for architecture of complex electronic circuit (microprocessors...)

Zhao et al., IEEE Trans Mag. 2009 ; Matsunaga et al., DATE'09)

Tunnel barrier

*e***-**

Thank you for your attention !

