Non volatility and GHz magnetization dynamics in magneto-electronic devices, from memory to logic

IEF Orsay, "NanoSpinTronics" group (France)

C. Chappert, T. Devolder, J.-V. Kim, D. Ravelosona, J.-O. Klein, N. Vernier

+ P. Crozat (HF metrology @IEF)

with many PhD students: A. Helmer, C. Burrows, P. Balestriere, Y. LeMaho, M. Nguyen Ngoc, L. Bianchini, W. Zhao ...

and post-docs: H.-W. Schumacher, D. Stanescu, N. Lei, S. Park, ...

on work cited here:

Advanced Research Laboratory, Hitachi, Tokyo (Japan) J. Hayakawa, K. Ito, H. Takahashi *tunnel junctions fabrication, micromagnetic modelling*

HITACHI Inspire the Next

Laboratory for Nanoelectronics and Spintronics, <u>RIEC-Tohoku University</u>, Sendai (Japan) S. Ikeda, H. Ohno *magnetic tunnel junctions fabrication*

Hitachi Almaden (USA)

J.A. Katine, M.J. Carey, spin valve nanopillars fabrication

University of California, San Diego (USA)

E.E. Fullerton spin valve films growth for DW studies

LPS Orsay

J. Miltat, J. Ferré micromagnetic modelling, DW physics

<u>etc...</u>

<u>Damped precession</u> of the magnetization M around its equilibrium axis

• <u>precession frequency</u>: $f = f_0 H_{eff}$

$$f_0 = 28 MHz / mT (= 2.8 GHz / kOe)$$

magnetic energies → <u>effective field</u> H_{eff}

• the Landau-Lifshitz-Gilbert (LLG) equation

$$\frac{d\vec{M}}{dt} = -|\gamma|\mu_0 \left(\vec{M} \times \vec{H}_{eff}\right) + \frac{\alpha}{\|\vec{M}\|} \left(\vec{M} \times \frac{d\vec{M}}{dt}\right)$$
friction torque
(damping)

The necessary compromise in magnetic recording

Reading: The magnetic tunnel junction

Jullières 1973 ; Moodera 1995

a convenient device to integrate magnetic storage in CMOS electronics the magnetic RAM

Writing: Spin Transfer Torque switching

J. C. Slonczewski, JMMM 159, L1 (1996)

exchange interaction between the spin of conduction electrons and M

writing by a current density -> ~scalable

From conventional MRAM...

to "spin transfer" MRAM

HITACHI, ISSCC March 2007)

→ simple " integrated " architecture, above CMOS technology,

→ "write" driven by a current density, potential for :

• downscaling down to 20nm (Li et al., DATE'09 conf.)

• " moderately high " density (<10 F²),

→ " fast " (10-100 ns) : main advantage of M-RAM versus other NV-RAM

 but : more costly to fabricate (magnetic back end) and much less dense than Flash (soon 1.3 F² / bit !!!) or other new NV-RAM (PC-RAM, RRAM, ...)

Tighter integration between logic and memories

slide © B. Dieny, Grenoble

With CMOS technology only:

Tighter integration between logic and memories

slide © B. Dieny, Grenoble

With CMOS technology only:

With hybrid CMOS/magnetic:

Fast communication between logic and memory -numerous short vias -simpler interconnecting paths -Smaller occupancy on wafer - extended possibilities for programmation and reconfiguration -possibility to power-off unused CMOS blocks with instant-on restart

New paradigm for architecture of complex electronic circuit (microprocessors...)

Spin-RAM specifications "to be achieved"

	Products / Demos	Predicted	Position vs CMOS	
Cell size	20 – 80 F ²	< 10 F ²	>> NAND << SRAM	
Technology	Above CMOS		➔ embedded NVM	
Speed	~ 40 ns (2.7 ns)	≤ ns ???	∼SRAM, μP	Logic circuits
Endurance	10 ¹⁵	~ infinite	>> NAND	
Non volatility	> 10 years		0	intel Xeon" - Lan
Scalability	90 nm	20 nm???	???	

• can we make the Spin-RAM to reach high operation speed ?

- at low enough current/voltage compatible with CMOS
- will it be reliable ?

error rate should not be measurable for logic applications

Precession of the magnetization and spin transfer

... old and new issues of magnetic storage ...

Speed: macrospin dynamics of spin transfer writing

The case of a platelet magnetized in plane: J.Sun, PR

J.Sun, PRB 62, 570 (2000)

fast switching requires currents >> I_{sw}

+ trajectory ~ confined around the plane by dipolar shape anisotropy

Speed: macrospin dynamics of spin transfer writing

The case of a platelet magnetized in plane: J.Sun, PRB 62, 570 (2000)

<u>1 – samples:</u> spin valve Nanopillars *J. Katine & M. Carrey, HGST San José*

- PtMn17.5/CoFe1.8/Ru0.8/CoFe2/Cu3.5/CoFe1/NiFe1.8 (nm) - GMR~1.5%
- **<u>2 experiment :</u>** send a series of same current pulses and measures the switching probablility

Devolder et al., APL 88, 2006

Switching probability versus pulse parameters: (δt , I_{MAX}) in a spin valve nanopillar

ns

Devolder et al., APL 88, 2006

Measurement on magnetic tunnel junctions

Set-up (complete with HF)

Sample response to a repetition of the same pulse (one color per pulse)

SINGLE-SHOT (time-resolved)

Na

event-selected-averaged, time-resolved traces

NanoSciences

MAIN OUTCOMES:

- → stochastic incubation delay.
- → then fast switching (~300ps) proceeds through a reproducible trajectory
- → post-switching ringing: 1.4 GHz, damped in 1.5 ns

Vertically offset curves

TNT Barcelone - Sept. 2009

Experiment vs macrospin behaviour

Observed:

+ no ringing

Expected

➔ build up of oscillating behavior before switching, from a random start due to thermal excitation

Proposed interpretations

NON UNIFORM SWITCHING

A - stochastic incubation delay

highly non uniform local excitations

B - fast switching (~300ps) through a reproducible trajectory

C - post-switching ringing: 1.4 GHz, damped in 1.5 ns

MACROSPIN CALCULATION WITH TEMPERATURE AND FILED-LIKE TERM IN SPIN TRANSFER TORQUE

$$\tau = a_J \mathbf{M} \times (\mathbf{M} \times \mathbf{m}_{\mathbf{P}}) + b_J \mathbf{M} \times \mathbf{m}_{\mathbf{P}}$$

Garzon et al., PRB 2009

- ➔ smaller devices give more coherent behaviour... but still k_BT !!!!
- → tilted initial angle between magnetizations of memory and reference layers

- ➔ smaller devices give more coherent behaviour... but still k_BT !!!!
- → tilted initial angle between magnetizations of memory and reference layers

- → smaller devices give more coherent behaviour... but still k_BT !!!!
- → start a large angle precession at or before current pulse onset

by changing the magnetic energy \rightarrow H_{eff}

Improved spin transfer dynamics for fast MRAM

- ➔ smaller devices give more coherent behaviour... but still k_BT !!!!
- → start a large angle precession at or before current pulse onset

by changing the magnetic energy \rightarrow H_{eff}

→ change the internal effective field !

ex: coupling to a multiferroic layer + voltage

Ramesh et al. NatMat6, 21 (2007)

Also: strain, cf : Lee et al. APL82 (2003); Boukari et al., JAP 101 (2007) (on metals)

CONCLUSION

similar stochastic behaviour for DW depinning by current pulse (cf Moriya, Nat. Phys. 2008; C. Burrows, Nature Phys. in press,)
 → storage track memory (cf S. Parkin, this conference)

→ DW MRAM Fukami et al. (NEC), VLSI 2009

 critical current for spin transfer switching still needs to be reduced (by 3 o 5) to ensure high density and scalability @ ~10ns R:W cycle

- → perp. magnetized materials (*E. Fullerton, this conf.*)
- → synthetic antiferromagn. free layer (Hayakawa, Jpn. J. Appl. Phys 2006)

speed potential maybe the major asset for MRAM, but assistance to spin transfer should be necessary to reach sub-ns switching

Ultrafast MRAM for "logic in memory":

a new paradigm for architecture of complex electronic circuit (microprocessors...)

Zhao et al., IEEE Trans Mag. 2009 ; Matsunaga et al., DATE'09)

Thank you for your attention !

