Dynamic Performances of Carbon Nanotube Transistors and Programmable Devices for Adaptive Architectures

> V. Derycke, G. Agnus, N. Chimot, A. Filoramo, J-P. Bourgoin CEA Saclay, IRAMIS, SPEC

> > W. Zhao, C. Gamrat

CEA Saclay, LIST

L. Nougaret, A. Le Louarn, H. Happy, G. Dambrine S. Lenfant, D. Vuillaume

IEMN, CNRS & Université de Lille

A. Green, M. Hersam

Northwestern University, Evanston, Illinois, USA

Trends in Nanotechnology, Barcelona Sept. 2009

Carbon Nanotube Field Effect Transistors

DC electrical characteristics of the best CNTFETs approach the theoretical limit for ideal 1D-FETs in the ballistic regime

Carbon Nanotube Field Effect Transistors

The improvement in performances could be significant but:

- □ What about demonstrated high-speed performances ?
- □ How do we place the good CNT at the good place a billion times ?
- □ How do we grow / sort CNTs that are 100% semiconducting?
- □ Can we compute with high impedance objects ?
- □ Can we compute with devices showing large device-to-device variability ?

Exceptional electronic properties

+ sensing capabilities

+ properties preserved on most substrates

in particular :

□ flexible / organic / transparent substrates

□ above silicon CMOS circuits

OUTLINE

- □ High-frequency CNT transistors
- □ High-frequency *flexible* CNT transistors for 'large scale'-electronics
- □ CNTFET as light sensors and memory devices
- □ CNT memory devices as 'synapses' in adaptive architectures

HF measurement issues

 f_{T} in the THz range only if NTs are the limiting factor, but...

(1) Individual CNTs are high impedance objects (> 6.5 k Ω) \rightarrow difficult to measure with standard 50 Ω equipment

(2) Nanometric objects in a macroscopic structure \rightarrow detrimental influence of parasitic capacitances

Mixing techniques

Configuration with several nanotubes

HF Nanotube transistors (from random networks)

J-M Bethoux, G. Dambrine, H. Happy (IEMN)

Large number of NTs \rightarrow high drive current (>1 mA)

Thin Al₂O₃ oxide \rightarrow high transconductance

We inject RF power from the gate and from the drain and measure the transmitted and reflected power. From the S-parameters we extract some figures of merit:

- the current gain H_{21}

 $H_{21} = I_2/I_1 (V_{2=0}) = -2S_{21}/[(1-S_{11})(1+S_{22})+S_{12}S_{21}]$

- its cut-off frequency f_{T}

- the power gain MSG

J-M Bethoux, G. Dambrine, H. Happy (IEMN)

→ Highest f_T for a CNT device in 2006: 8 GHz
→ But 8 Ghz is low !
→ No off-state !

Bethoux et al, Elec. Dev. Lett. 27, 681 (2006)

HF Nanotube transistors (from oriented networks)

A. Le Louarn, G. Dambrine, H. Happy (IEMN)

very high density of aligned CNTs depositied by dielectrophoresis \rightarrow >10 mA of current drive

HF Nanotube transistors (from oriented networks)

HF Nanotube transistors based on 99% semiconducting CNTs

L. Nougaret, G. Dambrine, H. Happy (IEMN)

→ better off-state (but still need improvement) L. Nougaret et al, Appl. Phys. Lett. 94 (2009) 243505

Toward fast and flexible circuits

- \rightarrow Carbon nanotube FETs can indeed be fast
- \rightarrow The measured f_T is still limited by the parasitics and the CNT quality
- \rightarrow Scaled-down devices are very high impedance FETs
- \rightarrow Good candidates for high-speed / large area electronics on "any"-substrates

Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates

Qing Cao¹, Hoon-sik Kim², Ninad Pimparkar⁷, Jaydeep P. Kulkarni⁷, Congjun Wang², Moonsub Shim², Kaushik Roy⁷, Muhammad A. Alam⁷ & John A. Rogers^{1–6}

CNT network-transistors are serious competitor for organic electronics

Can work in frequency range out of reach of polymers and small molecules

Flexible HF Nanotube transistors

The process we used on silicon can be adapted to plastic substrates

→ Comparable to results obtained with Si flexible ribbons and GaAs nanowires...

 \rightarrow Way above frequency range achieved by organic electronics

OUTLINE

- □ High-frequency CNT transistors
- □ High-frequency *flexible* CNT transistors for 'large scale'-electronics
- □ CNTFET as light sensors and memory devices
- □ CNT memory devices as 'synapses' in adaptive architectures

CNTFETs as light sensors

S. Lenfant, D. Vuillaume (IEMN)

CNTFETs built using APTS on 10 nm thick SiO₂ back-gate + Pd electrodes for improved performances + coated with ~5 nm of P3OT for light sensitization

The photo-excited polymer act as a 'optical gate' more efficient than the electrostatic gate

Opto-electronic memory

C. Anghel (CEA) 540 80 520 (7)I_s (μΑ) I_s (μΑ) 500 6 60 (4) (1) 480 (5) SiO₂ / P3OT TiO₂ / P3OT 460-40 20 60 40 80 0 10 15 5 20 0 time (s) time (s) accumulated electrons P3OT P3OT SiO_2 TiO₂ trapped electrons trapped holes

Role of the dielectric in the optical gating mechanism

Anghel et al, Nano Letters 8, 3619 (2008)

OG-CNTFET as 2-terminal programmable resistors

OG-CNTFET as 2-terminal programmable resistors

2-terminal programmable resistors as synapses

W. Zhao, C. Gamrat (CEA-LIST)

Programming compensates for variability

Crossbar of memristors (the HP way)

A hybrid nanomemristor/transistor logic circuit capable of self-programming

Julien Borghetti, Zhiyong Li, Joseph Straznicky, Xuema Li, Douglas A. A. Ohlberg, Wei Wu, Duncan R. Stewart, and R. Stanley Williams¹

Proc. Nat. Acad. Sci. (2008)

Crossbar of memristors

No gate electrode or one global gate electrode:

Compact but difficult to address devices individually

Individual gate electrodes: limited by interconnects complexity

 \rightarrow One gate per row

The proposed circuit topology for parallel learning

ACKNOWLEDGMENTS

Dynamic Performances of Carbon Nanotube Transistors and Programmable Devices for Adaptive Architectures

œ	V. Derycke, G. Agnus, N. Chimot, A. Filoramo, J-P. Bourgoin CEA Saclay, IRAMIS, SPEC
ce)	W. Zhao, C. Gamrat CEA Saclay, LIST
Transfert	L. Nougaret, A. Le Louarn, H. Happy, G. Dambrine S. Lenfant, D. Vuillaume IEMN, CNRS & Université de Lille
	A. Green. M. Hersam

Northwestern University, Evanston, Illinois, USA

J-O. Klein

IEF, Univ. Paris-sud Orsay, France

