

Quantifying Colloidal Nanoparticle Interactions in Liquid Environment by Cryogenic Electron Microscopy Ben Erné, Albert Philipse, Utrecht University

Objective

Our approach

Magnetic nanoparticles

Dipolar quantum dots

Oil-to-water transfer

# Objective: To measure interactions of colloidal nanoparticles in a liquid

0

relevant for

applications

relevant for chemical synthesis

Ο

00

#### a scientific challenge

van der Waals attraction



magnetic interaction...

How to measure on the scale of individual nanoparticles?

# Our approach





#### Approach:

# (1) Determine nanoparticle positions in a liquid

(2) Extract information about the interactions

## Cryogenic Transmission Electron Microscopy (cryo-TEM)



without field



Klokkenburg et al., PRL <u>96</u> & <u>97</u>, 2006

#### Approach:

# (1) Determine nanoparticle positions in a liquid

(2) Extract information about the interactions

## Cryogenic Transmission Electron Microscopy (cryo-TEM)



(1) Determine nanoparticle positions in a liquid

(2) Extract information about the interactions

#### Cryogenic Transmission Electron Microscopy (cryo-TEM)

Approach:



Klokkenburg et al., PRL <u>96</u> & <u>97</u>, 2006

(1) Determine nanoparticle positions in a liquid

(2) Extract information about the interactions

#### Cryogenic Transmission Electron Microscopy (cryo-TEM)

Approach:



Klokkenburg et al., PRL <u>96</u> & <u>97</u>, 2006

(1) Determine nanoparticle positions in a liquid (2) Extract information about the interactions Cryogenic Transmission Electron Microscopy (cryo-TEM) 10<sup>-5</sup> A model, for instance: Cluster size analysis surface mole fraction  $x_{q}$ linear aggregation  $x_{q} = x_{1}^{q} \exp\left(\frac{-(q-1)V}{k_{B}T}\right)$ 10<sup>-6</sup>-10<sup>-7</sup>. Contact interaction V 5 number q of particles in a cluster Klokkenburg et al., PRL <u>96</u> & <u>97</u>, 2006

Approach:

# Magnetic nanoparticles

#### Magnetic nanoparticles



magnetite nanoparticles (Fe<sub>3</sub>O<sub>4</sub>) single magnetic domain low polydispersity oleic acid capped solvent: decalin ( $C_{10}H_{18}$ )



The dipolar contact interaction V is known:

$$V = \frac{-\mu_0 \mu^2}{2\pi \sigma^3}$$

**Experiment 1:** 

 $d = 12 \text{ nm} \rightarrow V = -0.5 k_{\text{B}}T$ 

# Cryo-TEM of $Fe_3O_4$ in decalin





The dipolar contact interaction *V* is known:

$$V = \frac{-\mu_0 \mu^2}{2\pi \sigma^3}$$

**Experiment 1:** 

 $d = 12 \text{ nm} \rightarrow V = -0.5 k_{\text{B}}T$ 

#### Insufficient V for dipolar chaining

## Cryo-TEM of $Fe_3O_4$ in decalin





The dipolar contact interaction V is known:

$$V = \frac{-\mu_0 \mu^2}{2\pi \sigma^3}$$

**Experiment 2:** 

$$d = 20 \text{ nm} \rightarrow V = -9 k_{\text{B}}T$$

# Sufficient V for dipolar chaining

# Cryo-TEM of $Fe_3O_4$ in decalin





The dipolar contact interaction V is known:

$$V = \frac{-\mu_0 \mu^2}{2\pi \sigma^3}$$

# **Experiment 2:**

$$d = 20 \text{ nm} \rightarrow V = -9 k_{\text{B}}T$$





# Dipolar quantum dots

#### Quantum dots: an electric dipole moment?



#### Klokkenburg et al., Nano Lett., 2007

Cryo-TEM of CdSe (d = 6 nm) in decalin



Chaining can occur here, we find  $\mu_{e} \approx 500$  D

## Oil-to-water transfer

#### Oil-to-water

Poly-acrylic acid method: Zhang et al., *Nano Lett.* 7, 3203 (2007)



21 nm CoFe<sub>2</sub>O<sub>4</sub>

#### Decalin

#### Water, 0.1 mM NaOH ( $1/\kappa = 30$ nm)



# Conclusion



Quantifying Colloidal Nanoparticle Interactions in Liquid Environment by Cryogenic Electron Microscopy Ben Erné, Albert Philipse, Utrecht University

Cryo-TEM = useful to study nanoparticle interactions

Magnetic nanoparticles, quantum dots, oil-to-water...



New PhD's: combined approach with cryo-TEM + analytical centrifugation + dielectr. spectr. + ...

Electron microscopy: Molecular cell biol., Debye inst., Hans Meeldijk Students: Mark Klokkenburg, Niek Hijnen, Bob Luigjes ...