CHEMICALLY DERIVED GRAPHENE: ELECTRONIC AND MECHANICAL PROPERTIES

Cristina Gómez-Navarro

Universidad Autónoma de Madrid Max-Planck-Institute for Solid State Research

Why Graphene?

Single layer of graphite

Extraordinary properties

•One atom thick: real 2D material

•Electronic band structure, transport properties

Semi-metal with field effect

High quality: Ballistic transport on micron scale

 μ ~100.000 cm²/Vs

Mechanical properties

High strength of carbon-carbon bond 2D flexible but stiff films

Applications: Proof of concept devices

FET: graphene ribbons

Gas sensors

Transparent electrodes

Bunch, Science 2007

Schein, Nature Materials 2007

NEMS: Electromechanical Resonators

Bio devices

Mohanty, nanoletters 2008

Graphene Bacte

Graphene DNA

Current ways to obtain Graphene

Initial idea

1st: Synthesizing graphite oxide

Graphite oxide: graphite functionalized with epoxy C-O-C and hydroxyl C-OH groups in the interlayer and C-OH -COOH groups at the edges of the graphene sheets.

Graphite oxide layers are easy to separate in water...leading to "graphene oxide"

Solution process

2nd: Adsorption of single GO layers on surface

3rd: Reducing GO by chemical procedures on surface

Hydrazine or hydrogen plasma

Quality and properties of graphene obtained trough this route?

AFM imaging of GO

Very high mono\multilayer ratio

1 st layer h~ 1.0±0,1nm 2nd layer h ~ 0,8±0,1nm

h in agreement with theoretical expectation

Electronic transport GQ

Electrodes by e-beam lithography

IV curves as a function of reduction time with hydrazine

Electronic transport reduced GO

High resolution imaging of GO

GO on HOPG

AFM: wrinkling

STM: ordered\disordered regions

Raman spectroscopy: GO

2nd step: Chemical Vapor Deposition of ethylene

High T
Decomposition of C₂H₄
obtaining atomic C
to be incorporated in vacancies
High T facilitates healing

Flow ethylene for 3 min at 800 °C

CVD treated GO: improved conductivity

After CVD conductivity increases two orders of magnitude

Lopez et al. Advanced Materials, 2009

CVD treated GO: Raman and coductivity

Conclusions on electrical transport

- GO routes provides access to a large scale production of graphene monolayers.
- Reduction improves conductivity in 3 orders of magnitude
- CVD of ethylene increases conductivity in 2 orders of magnitude.
- CVDGO still contains a considerable amount of defects.

Gomez-Navarro et al. *Nanoletters* 2007 Lopez et al. *Advanced Materials* 2009

GO: mechanical properties

$$K_{eff} = 32Ew(t/l)^3 + 17T/l$$

Correlation between conductivity and elastic modulus

Gomez-Navarro et al. Nanoletters 2008

Acknowledgments

Max-Planck-Institut fuer Festkoerperforschung

- Klaus Kern
- Marko Burghard
- Thomas Weitz
- Ravi Sundaram
- Alexander Bittner

Universidad Autonoma de Madrid

• Vicente Lopez

- UNIVERSIDAD AUTONOMA
- Felix Zamora
- Julio Gomez Herrero

University of Siegen

- Matteo Scolari
- Alf Mews

Nanotec Electronica

Thank you for your attention!