

Nanomagnetism – a perspective from the dynamic side

Burkard Hillebrands

Fachbereich Physik and Research Center OPTIMAS Technische Universität Kaiserslautern Kaiserslautern, Germany

> TNT 2009 Nanotechnology Barcelona, Spain, 7-11 September 2009

Coherent dynamics: spin waves

Landau-Lifshitz torque equation

$$\frac{1}{|\gamma|} \frac{d\vec{M}(t)}{dt} = -\vec{M}(t) \times \vec{B}_{eff}(t)$$
Is intrinsically nonlinear equation !
$$\vec{m}(\vec{r},t) = \vec{m}_0(\vec{r}) \times e^{i(\vec{q}\vec{r} \cdot \omega t)}$$
dynamic magnetization
$$\vec{B}_{eff} - \vec{M}(t) \times \vec{B}_{eff}$$

$$\vec{M}_S = \vec{M}(t)$$

Content

Background

- spin waves in a small magnetic stripe with domain wall
- nanocontacts on spin-valve samples
- propagating spin waves in a small magnetic stripe

Summary

Coworkers

F. Ciubotaru, S. Hermsdörfer, A. Laraoui, B. Leven, B. Obry, C. Sandweg, S. Schäfer, H. Schultheiss, A. Serga, K. Vogt	TU Kaiserslautern
M. van Kampen, X. Janssens, L. Lagae	Interuniversitaire Micro-Electronica Centrum vzw (IMEC), Leuven, Belgium
V. Tiberkevich, A.N. Slavin	Dept. of Physics, Oakland University, Rochester, Michigan
J. Chapman	University of Glasgow
J Miltat	LPS Université Paris-Sud

Content

Background

- spin waves in a small magnetic stripe with domain wall
- nanocontacts on spin-valve samples
- propagating spin waves in a small magnetic stripe

Summary

Spin waves

Two types of energy contributions

 exchange energy: generated by twist of neighbored spins

 dipolar energy: generated by magnetic poles in long-wavelength spin waves

Spin waves – dipolar limit

TNT 2009, Barcelona

Spin waves - dipolar-exchange

Brillouin light scattering (BLS) process

= inelastic scattering of photons from spin waves

TNT 2009, Barcelona

Brillouin light scattering spectrometer

high-resolution interferometry with high contrast for measurements of acoustic phonons and spin waves

... so far a lot of experience in development of spin-wave based concepts, such as:

- spin-wave logic
- nonlinear excitations (solitons, bullets)
- parametric amplification
- magnonic crystals

Realize these concepts on submicrometer scale

TNT 2009, Barcelona

Content

Background

- spin waves in a small magnetic stripe with domain wall
- nanocontacts on spin-valve samples
- propagating spin waves in a small magnetic stripe

Summary

Lateral spin-wave quantum size effect

Standing lateral modes

- propagating dipolar spin-wave modes
- quantization condition due to the lateral edges: $w = n \lambda_{spin wave}/2;$ $q_n = 2\pi/\lambda_{spin wave} = \pi n/w; \quad n = 1,2,3,...$
- boundary conditions (open pinned)

Ni₈₁Fe₁₉ nanostripes

- Nucleation of a domain at protuberance applying a field sequence
- Observation of thermal spin waves
- Experiment: BLS spectra measured along a line indicated by the red dots, focus diameter 250 nm

OOMMF simulations:

Lorenz microscopy

Comparison to OOMMF simulation:

in cooperation with J. Chapman group, Glasgow

TNT 2009, Barcelona

Technique: BLS Microscopy

- optical resolution: 250nm
- 2D piezo stage
- controlling sample while measuring
- frequency range:
 1GHz 1THz
- spectral resolution: 200MHz
- position stability: *infinite*
- accuracy: better than 20nm
- high reproducibility

TNT 2009, Barcelona

BLS Microscopy - experimental setup

TNT 2009, Barcelona

Measurement procedure

TNT 2009, Barcelona

Ni₈₁Fe₁₉ nanostripes: thermal spectrum

Thermal spin wave spectrum...

...without domain wall

...with domain wall at protuberance

C. W. Sandweg et al., J. Phys. D 41, 164008 (2008)

TNT 2009, Barcelona

Ni₈₁Fe₁₉ nanostripes: thermal spectrum

C. W. Sandweg et al., J. Phys. D 41, 164008 (2008)

TNT 2009, Barcelona

Content

Background

- spin waves in a small magnetic stripe with domain wall
- nanocontacts on spin-valve samples
- propagating spin waves in a small magnetic stripe

Summary

Nano-contact sample layout

SEM images of the sample (top view)

TNT 2009, Barcelona

AC induced magnetization dynamics

Measuring at fixed position near the nanocontact

- Measuring at fixed position near the nanocontact
- Sweeping the RF current frequency for a fixed applied power (= 20 mW)

Higher frequency generation: 2f, 3f, 4fNon-integer-half frequency generation: 1/2 f, 3/2 f

TNT 2009, Barcelona

Nonlinear magnetic phenomena

Field-dependent excitation spectra

TNT 2009, Barcelona

Splitting process – threshold frequency

Oersted field contribution of 16 Oe/mA to the internal field

TNT 2009, Barcelona

У

Origin of the Oersted field contribution

Splitting process – threshold power

- The resonance mode increases linearly with the applied RF-power
- The f/2 mode shows clearly threshold behaviour

Content

Background

- spin waves in a small magnetic stripe with domain wall
- nanocontacts on spin-valve samples
- propagating spin waves in a small magnetic stripe

Summary

Inelastically scattered light contains phase information

Interference between sample beam and reference beam

A. A. Serga et al., APL 89, 063506 (2006)

Phase-resolved detection of propagating spin waves in small Py microstripe

Permalloy stripe:

width: 2.5 µm length: ~ 100 µm thickness: 40 nm

Interference picture:

- proof of propagating spin-wave nature
- information on spin-wave wavelength

Phase profile of spin waves

Spin-wave phase profile:

- four measurements required [1]
- slope yields spin-wave wavelength

[1] A. A. Serga et al., APL 89, 063506 (2006)

TNT 2009, Barcelona

Comparison with theory yields perfect agreement:

Phase-resolved BLS microscopy is a powerful tool for the detection of propagating spin waves

TNT 2009, Barcelona

Summary

Background

- spin waves in a small magnetic stripe with domain wall
- nanocontacts on spin-valve samples
- propagating spin waves in a small magnetic stripe

Summary

nano-magnonics: spin dynamics on the nano-scale