

Nanomagnetism – a perspective from the dynamic side

Burkard Hillebrands

Fachbereich Physik and Research Center OPTIMAS Technische Universität Kaiserslautern Kaiserslautern, Germany

> TNT 2009 Nanotechnology Barcelona, Spain, 7-11 September 2009

Coherent dynamics: spin waves

Landau-Lifshitz torque equation

$$
\begin{array}{c}\n\begin{array}{c}\n+ & \downarrow \\
+ & \downarrow \\
$$

Content

Background

- $\mathcal{L}_{\mathcal{A}}$ spin waves in a small magnetic stripe with domain wall
- $\mathcal{L}_{\mathcal{A}}$ nanocontacts on spin-valve samples
- $\mathcal{L}_{\mathcal{A}}$ propagating spin waves in a small magnetic stripe

Summary

Coworkers

Content

Background

- T. spin waves in a small magnetic stripe with domain wall
- $\overline{}$ nanocontacts on spin-valve samples
- \blacksquare propagating spin waves in a small magnetic stripe

Summary

Spin waves

Two types of energy contributions

Exchange energy: generated by twist of neighbored spins

 $\mathcal{L}_{\mathcal{A}}$ dipolar energy: generated by magnetic poles in long-wavelength spin waves

Spin waves – dipolar limit

Spin waves - dipolar-exchange

Brillouin light scattering (BLS) process

= inelastic scattering of photons from spin waves

Brillouin light scattering spectrometer

high-resolution interferometry with high contrast for measurements of acoustic phonons and spin waves

... so far a lot of experience in development of spin-wave based concepts, such as:

- \blacksquare spin-wave logic
- nonlinear excitations (solitons, bullets)
- parametric amplification
- magnonic crystals

Realize these concepts on submicrometer scale

Content

Background

- $\mathcal{L}_{\mathcal{A}}$ spin waves in a small magnetic stripe with domain wall
- \blacksquare nanocontacts on spin-valve samples
- \Box propagating spin waves in a small magnetic stripe

Summary

Lateral spin-wave quantum size effect

Standing lateral modes

- **•** propagating dipolar spin-wave modes
- quantization condition due to the lateral edges: $w = n \lambda_{\text{spin wave}}/2;$ *q*n = 2π/λspin wave ⁼π*n*/*^w*; *ⁿ* = 1,2,3,...
- **boundary conditions (open pinned)**

Ni₈₁Fe₁₉ nanostripes

- Nucleation of a domain at protuberance applying a field sequence
- $\mathcal{L}_{\mathcal{A}}$ Observation of thermal spin waves
- Experiment: BLS spectra measured along a line indicated by the red dots, focus diameter 250 nm

OOMMF simulations:

Lorenz microscopy

Technique: BLS Microscopy

- **•** optical resolution: 250nm
- 2D piezo stage
- controlling sample while measuring
- **frequency range:** 1 GHz – 1THz
- **spectral resolution:** 200MHz
- **•** position stability: *infinite*
- $\mathcal{L}_{\mathcal{A}}$ accuracy: *better than 20nm*
- \blacksquare high reproducibility

BLS Microscopy - experimental setup

Measurement procedure

$\mathrm{Ni_{81}Fe_{19}}$ nanostripes: thermal spectrum

protuberance

Thermal spin wave spectrum…

…without domain wall …with domain wall at

C. W. Sandweg et al., J. Phys. D **41**, 164008 (2008)

$\mathrm{Ni_{81}Fe_{19}}$ nanostripes: thermal spectrum

H_{parallel}

C. W. Sandweg et al., J. Phys. D **41**, 164008 (2008)

Content

Background

- \Box spin waves in a small magnetic stripe with domain wall
- $\overline{}$ nanocontacts on spin-valve samples
- H. propagating spin waves in a small magnetic stripe

Summary

Nano-contact sample layout

SEM images of the sample (top view)

AC induced magnetization dynamics

T. Measuring at fixed position near the nanocontact

- T. Measuring at fixed position near the nanocontact
- \blacksquare Sweeping the RF current frequency for a fixed applied power (= 20 mW)

Higher frequency generation: 2f, 3f, 4f Non-integer-half frequency generation: 1/2 ƒ, 3/2 ƒ

Nonlinear magnetic phenomena

Field-dependent excitation spectra

Splitting process – threshold frequency

Oersted field contribution of 16 Oe/mA to the internal field

y

Origin of the Oersted field contribution

Splitting process – threshold power

RF Frequency = 8.9 GHz; H = 245 Oe

- $\mathcal{L}(\mathcal{L})$ The resonance mode increases linearly with the applied RF-power
- **CONTRACTOR The f/2 mode shows clearly threshold behaviour**

Content

Background

- Ш spin waves in a small magnetic stripe with domain wall
- \Box nanocontacts on spin-valve samples
- $\mathcal{L}_{\mathcal{A}}$ propagating spin waves in a small magnetic stripe

Summary

Inelastically scattered light contains phase information

Interference betweensample beam and reference beam

A. A. Serga et al., APL **89**, 063506 (2006)

Phase-resolved detection of propagating spin waves in small Py microstripe

Permalloy stripe:

width: 2.5 µm length: \sim 100 µm thickness: 40 nm

Interference picture:

- \mathbf{r} proof of propagating spin-wave nature
- $\overline{}$ information on spin-wave wavelength

Phase profile of spin waves

Spin-wave phase profile:

- four measurements required [1]
- slope yields spin-wave wavelength

[1] A. A. Serga et al., APL **89**, 063506 (2006)

Comparison with theory yields perfect agreement:

Phase-resolved BLS microscopy is a powerful tool for the detection of propagating spin waves

Summary

Background

- $\mathcal{L}_{\mathcal{A}}$ spin waves in a small magnetic stripe with domain wall
- $\mathcal{L}_{\mathcal{A}}$ nanocontacts on spin-valve samples
- \blacksquare propagating spin waves in a small magnetic stripe

Summary

nano-magnonics: spin dynamics on the nano-scale