

Phenomenology and Models of Exchange Bias in Core /Shell Nanoparticles

Òscar Iglesias

Xavier Batlle and Amílcar Labarta

Departament de Física Fonamental and Institut de Nanociència i Nanotecnologia Universitat de Barcelona, Spain

oscar@ffn.ub.es http://www.ffn.ub.es/oscar

Trends in Nanotechnology (TNT 09) Barcelona 8th September 2009

FM film on top of AFM

I. Schuller, MRS Bulletin, Sept. 2004

 $\mathsf{I}_{\mathsf{exch}}$

Displacement of loop after FC due to coupling of the FM to the AFM

I. INTRODUCTION

Modeling Exchange Bias

II. WHAT IS EXCHANGE BIAS

EB Key Ingredients and models

KEY INGREDIENTS

• Pinned Antiferromagnet \Rightarrow High anisotropy K_{AFM}

- Exchange coupling at the interface \Rightarrow FM or AFM
- Uncompensated moment of the AFM \Rightarrow Loop displacements

OPEN QUESTIONS

- Nature of interface interaction.
- Quantifying the loop shifts.
- Reversal mechanisms.
- Hysteresis loop asymmetry.

MODELS

• **Meiklejohn, Bean (1956)** *Uncomp. Interface Too large shift*

• **Malozemoff (1987)** *Random field Interf. roughness*

Interface AF Domain Wall

• **Mauri (1987)**

• **Koon (1997)** *Spin-flop coupling*

• **Schulthess, Butler (1998)** *Magnetostatic interations*

• **Kiwi (1999)** *Frozen interface model*

-
- **Stiles, McMichael (1999)** *Polycrystalline interface AFM grains*
- **Nowak, Usadel (2000)** *Domain state model Diluted AFM*

III. EB PHENOMENOLOGY

Experimental systems showing EB

III. EB PHENOMENOLOGY

Phenomenology in Core/Shell NPs

III. EB PHENOMENOLOGY

Phenomenology in Core/Shell NPs

7

 (a)

 (b)

 (c)

 10^5

III. EB PHENOMENOLOGY Phenomenology in Core/Shell NPs

EXA Key Questions in EB Phenomenology

• Interplay with Surface Effects and Interparticle Dipolar Interactions \Rightarrow

• Magnitude of the EB and coercive fields \Rightarrow

• Distributed properties and role of $T_B \implies$

• EB vs. Minor loop Effects \Rightarrow

Model for a Core/Shell NP

$$
H/K_B = -\sum_{\langle i,j\rangle} J_{ij} \vec{S}_i \cdot \vec{S}_j - \sum_i K_i \left(\vec{S}_i \cdot \hat{n}_i\right)^2 - \vec{h} \cdot \sum_i \vec{S}_i
$$

Monte Carlo simulation, Metropolis algorithm for continuous spins $\bf{k}_{B} = -\sum_{i} \bf{J}_{i j} \vec{S}_{i} \cdot \vec{S}_{j} - \sum_{i} \bf{K}_{i} (\vec{S}_{i} \cdot \hat{n}_{i})^2 - \vec{h} \cdot \sum_{i} \vec{S}_{i}$

Monte Carlo simulation,

Metropolis algorithm for continuous spins
 \bf{s}_{i} = Heisenberg Spins in simple cubic lattice

Results: ZFC-FC Loops

 Loop after FC is displaced towards negative field direction with respect to ZFC loop.

 \triangleright Notice also the vertical shift of the shell magnetization.

 \triangleright Shell behavior is dictated by coupling with the core through J_{int} .

 \triangleright Changing the sign of the interface coupling influences the net magnetization at the interface.

O. Iglesias, X. Batlle and A. Labarta, Phys. Rev. B 72, 212401 (2005)

JS = -0.5, JInt = -0.5

 $\overline{\mathbf{S}}$

TNT09, Barcelona, September 8th EB in core/shell NP's Òscar Iglesias 2009

JS = -0.5, JInt = +0.5

 $J_s = -0.5$, $J_{int} = +0.5$

Results: Field Cooling

COLOR CODE: **dark blue ⇒ core**, green ⇒ shell

yellow (cyan) ⇒ shell (core) interfacial spins

Temperature dependence of magnetization under cooling field $h_{FC} = 4$

O. Iglesias and A. Labarta, Physica B 372, 247 (2006)

After FC from high temperature $T > T_N$:

- Core with FM order.
- \triangleright Shell with AF order.
- \triangleright Interface spins have net magnetization along z-axis.

Results: Increasing anisotropy

Increasing the anisotropy of the AF shell

\triangleright Results: h_{EB} and H_c

Microscopic Origin of EB

IV. MICROSCOPIC MODEL Results: Loop assymetries

Increasing interface exchange coupling

 $J_{\text{Int}} = -0.2$ $J_{\text{Int}} = -0.5$ $J_{\text{Int}} = -1$

n i $\overline{\mathsf{S}}$

 $\sum \left| \vec{S}_i \cdot \hat{n}_i \right|$ M_n \Rightarrow Magnetization projection along easy-axis

Loop asymmetry is induced by the increasing interface coupling

Results: Reversal Mechanisms

Descending branch

COHERENT ROTATION

Loop asymmetry is due to different reversal mechanisms and increases with J_{Int}

Increasing branch

NUCLEATION + PROPAGATION

17

 ${\bf T}$ н

Results: Vertical Shifts

Results: Particle Size Dependence

Particle Size dependence

From core/shell to AFM NPs

O. Iglesias et al., J. Nanosci. Nanotechnol. 8, 2761 (2008)

\triangleright **Results: Temperature and h**_{FC} dependence

Temperature dependence Cooling field dependence

 \triangleright h_{eb} decreases with T and vanishes above 6 K.

 \triangleright h_c decreases also with T, but presents a local maximum at the vanishing h_{eh} temperature.

O. Iglesias et al., J. Nanosci. Nanotechnol. 8, 2761 (2008)

O. Iglesias et al., J. Phys. D 41, 134010 (2008)

- *1. Monte Carlo simulations* at the *atomistic* level are useful to understand microscopic origin of *magnetic phenomenology of nanomagnets*.
- 2. The *microscopic origin* of EB has been unveiled and quantified. We have shown that h_{EB} is due to the exchange field acting on the particle core, generated by the net magnetization of *uncompensated of shell spins at the interface*.

CONCLUSIONS

- *3. Asymmetry* between the descending and ascending branches of the loops has been observed which increases with the strength of the interface coupling J_{Int}. *Different reversal mechanisms*: (uniform rotation, nucleation-propagation) are responsible for it.
- 4. Vertical shifts, particle size, cooling field and temperature dependence can be understood from the simulation results.
- 5. Surface and interaction effects compete with EB and complicate interpretations.
- 6. Further simulation studies of interacting core/shell particles with internal structure and particles embedded in a matrix are under progress.

More up to date information at the web page: *http://www.ffn.ub.es/oscar*

