

Growing a Carbon Nanotube Atom by Atom: "And yet it does turn"

Stephen T. Purcell

Mickaël Marchand, Catherine Journet, Dominique Guillot, Jean-Michel Benoit, Boris I. Yakobson (Rice U.)

Laboratoire de Physique de la Matière Condensée et Nanostructures <u>UMR 5586</u> CNRS - Université Claude Bernard-Lyon I

Summary

- PNEC Activities
- Growing carbon nanotubes during field emission

Physique de Nanostructures et Emission de champ (PNEC)

Team created Sept 2004

7 Permanent researchers: CNRS and Profs Stephen Purcell, Catherine Journet, Pascal Vincent, Anthony Ayari, Jean Michel Benoit, Philippe Poncharal, Sorin Perisanu

Theses May Choueib : Cotutelle LMI (D. Cornu) FE SC Nanowires Vincent Gouttenoire, : NEMS based on CNTs and Nanowires Micheal Marchand, : FE Nanotubes: growth and fundamental studies Thomas Barois : Non-linear effects, auto-oscillations

2 Engineers : Dominique Guillot, Jacques LeBrusq

Principal Orientations PNEC

• In ze beginning

Synthesis CNTs

Field emission CNTs and FE divers

New competences : electron transport, low temperature physics, micro-fabrication, electron microscopy and nano-manipulation, modelisation, etc.

- Range of fundamental and applied projects in Nanoscience
- Strong inter-connection entre les orientations
- Divers support notably ANR PNANO, ANR Blanche, Region Rhone Alpes, ...

Synthesis Nanotubes (Journet, Benoit, Marchand, ...)

- Field emission displays
- Micro-fluidity (Bocquet)
- Heat transfer

- Understanding growth
- Fundamental field emission
- Nanomechanics
- Electronic Transport

Field emission CNTS and semiconducting nanowires

(1) the physics de CNTS (transport, mechanics, tunneling theory,(2) electron et ions sources

Fundamental Studies

Applied Giant FE displays - Startup NEWSTEP The Concept Miniature triodes using FE from CNTs Flexible screen 8 mm licroch 8 mm Pixel Unit (mCRT)

Collaboration NEWSTEP, IMEC, Fraunhofer, AET, .. Support Capital Risk (Newstep)

Field emission from semi-conductor nanowires : SiC

Nano-Mechanics of CNTs/NWs : perspectives in NEMS

Auto-oscillations during FE from Semi-conducting SiC Nanowires

The emission current has a strong AC component,: Nanometric DC/AC converter

Nano-Mechanics of CNTs/NWs : perspectives in NEMS

Suspended SWNT oscillators

• application : FM demodulation Demodulation : tuner + demodulator + amplifier

 Vg_{DC} (V)

Digital data transmission

• Graphene: field emission, Raman, manipulation, transport, high pressure

FIG.1: a Graphene (α) and folded part (2 α). b Bernal bilayer (β) and folded part (2 β) Raman Spectroscopy Graphene Single and Double misoriented bilayers

Collaborations Sauvajol, San Miguel

• FE Ion sources for rare gas FIB, J. Gierak LPN, Inst Néel, Raith, Orsay Physics

Many different types de nanotubes even single wall with variable chirality.

Holy grail : Synthesis that controls radius, length, defects, number of tubes and chirality.

Growth: simulations based theories need a "ballout"

SWNT nucleus out of more than our 500 runs. Presently world-best simulated. Shown growth evolution at 1000 K and low E_{Ni-C} ~ 50 meV

in preparation

• Layer by layer Growth measured by RHEED Oscillations

• Epitaxy semiconductors, (GaAs, Si, ...) - Neave, et al. Appl. Phys. A (1983).

• Epitaxy metals (Ni, Fe, ...) - Purcell, et al. (1987, Rap. Comm.)

Dilemma of "chiral relativity"

Ding, Yakobson PNAS 106, 2506 (2009)

For (n,m) tube, **m** kinks serve as active sites for C accretion, Growth rate K ~ m/D ~ sin (θ) ~ θ , 0 < θ < 30°

• « Screw Dislocation Like » mechanism

• Need to observe synthesis carbon ring by ring or better still, atom by atom. How?

Observations of growth directly in the environmental TEM

Lin, et al. Nanolett 2006

Hofmann, et al. Nanolett 2007

Still not "atomic" resolution

Observations of growin by held emissio

We hope to see

Thanks to Ruben Mascart, LPMCN

Deposition of carbon layer +catalyst particles FEM patterns

Synthesis of an individual CNT in FEM

Use Typical CVD conditions: • C_2H_2 , T=850 C, Low pressure ~ 10⁻⁷ Torr

Sudden nucleation, V_{FE} drops from 1600 to 200 V \rightarrow growth

Frame rate: 200 images/second

Experiment versus simulations

Solid Red : electrostatic simulations with a growth rate of 0.08 nm/sec. ((24,0) SWNT ($\Phi = 1.88$ nm), final length L=60nm)

Something more than the TEM experiments (for now)

Tip W+0

Frame rate: 200 images/second

- Must be related to the SDL mechanism
- Direct measure ring by ring of growth rate
- Implies solid particle and growth at one N defect

"15 successful growths (for 33 runs) of which 4 rotating growths, 6 non-rotating growths and 5 growths with FEM patterns at the screen edge where rotation could not be determined."

Post-growth FE characterisation

Our results... ...to be compared with

FEM SWNTs, K. Dean J. Vac Sci. Tech (1999).

Growth of a Nanotube Atom by Atom

Why does it turn? Geometric Frustration

End View

Side View

If you saw it once don't worry it happens a lot. Uzi Landman, Monday night.

Erratic angular movement but CNT still lengthens and moves in steps

Conclusions

- Beauty is in the eye of the beholder. We find it beautiful.
- Support for SDL growth
- Very slow and controlled growth
- FE can see attaching of individual atoms
- Probably dimers (to be proved)

Future :

- Increase reproducibility
- TEM TEM TEM
- Play interactively with pressure, temperature, gas type