Room Temperature Sputtered Ta₂O₅ for Solid State Biosensors

R. Branquinho^{1,2}, J.V. Pinto¹, L. Pereira¹, P. Barquinha¹, P. Estrela³, P. Baptista¹, R. Martins¹, E. Fortunato¹

¹ Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Portugal
² INL, International Iberian Nanotechnology Laboratory, Portugal
³ University of Bath, United Kingdom

Outline

Biosensors

EIS and ISFETs

Oxide semiconductors, dielectrics and TFTs

Production & characterization details

Results

Conclusions

Biosensor applications

- Clinical diagnostics stock
- Monitoring
- Pharmaceutics & Drug Discovery
- Environment
- Food Control
- Biodefense
- Forensic / Genetic identification
- Research

(medical, biochemical, biotechnological)

Electrochemical biosensors

Potentiometric biosensor, was invented by Clark in 1962

ISFET, was invented by Bergveld in 1970

Among the types of biosensors that have been proposed, the ISFET has several advantages:

label free small size and weight fast response high reliability low output impedance on-chip & bio-integration miniaturization continuous monitoring (in-situ) small volume samples

lab-on-chip applications

What is an ISFET?

(Ion Sensitive Field Effect Transistor)

The gate electrode is substituted by a reference electrode (E_{Ref}) and a solution.

Changes in the characteristics of the solution modulate the TFT channel conductance.

How does an ISFET work? MIS/MOS vs EIS Structures

(Electrolyte-Insulator-Semiconductor)

The simplest field effect device is the MOS/MIS capacitor. The total capacitance, **C** is a series combination of the insulator capacitance (**C**_{ox}) and the semiconductor depletion layer capacitance, **C**_s.

The layer set-up of the **EIS** sensor mimics the gate region of an **ISFET** with the advantage that no photolithographic process steps are necessary and the devices are fabricated with only one deposition.

How does an ISFET work? EIS STRUCTURES (Electrolyte-Insulator-Semiconductor)

The corresponding enzymatic reaction is:

penicillin +
$$H_2O \xrightarrow{\text{penicillinase}}$$
 penicilloic acid + H^+

pH detection mechanism (acidic or basic product)

pH variation is directly correlated to penicillin concentration

Amorphous Oxide Semiconductor and Dielectrics

- The Dielectric sensitive layer is critical
- Ta₂O₅ is a promissing material high surface buffer capacity

ISFET fabrication

Extended gate configuration:

This approach allows an easy separation between the sensing area and the transistor in order to reduce any risk of leakage.

ISFET produced @ Cenimat

O₂ Partial Pressure

O₂ Partial Pressure influence on pH sensitivity Pdep=0.3 Pa; P=150W; d=100nm

Maximum sensitivity was obtained for $14/1 \operatorname{sccm} Ar/O_2$ gas flow

O₂ Surface Plasma Treatment

- Sensitivity was enhanced 2.5 times compared to untreated sample
- C-V curves shifted to more negative V
- Variability increase from 9% (untreated) to 12% (O₂ 30W 5min.)

EIS Penicilline Sensor

The enzymatic reaction induces a local pH change measured by the underlying EIS capacitor

↑ Pen G con.

 \uparrow conc. H⁺ ↔ ↓pH

Positive voltage shift

Enzyme modified EIS sensors

Immobilization of penicillinase on the oxide surface: <u>physical adsorption</u> Buffer solutions (5 mM PBS, pH 7) with different concentration of penicillin (PenG)

Enzyme modified EIS sensors

- Low PenG conc. Sensitivity enhanced 2.5 times as for the pH sensor
- High PenG conc. Sensitivity also improved

ISFET pH sensor results

FCŁ

Conclusions

• We successfully develop by the first time extended gate ISFETs based on GIZO amorphous oxide semiconductors produced at room temperature by rf magnetron sputtering.

• Near Nernstian sensitivity of 57 mV/pH in a pH range of 2 to 12 was obtained for Ta_2O_5 EIS structures deposited with a 14/1 Ar/O₂ sccm ratio, with sensors being stable for at least 3 months.

• A sensitivity of 26 mV/mM to Pen G in a concentration range of 1 to 10 mM was achieved at room temperature for physically adsorbed penicillinase .

•Annealing and surface treatments on the sputtered oxides improve the sensitivity of the dielectric layer.

PhD scholarship

PTDC/SAU-BEB/098125/2008

Advanced Grant, project Invisible contract nº 228144

Jülich Campus / Biosensors Lab. and Prof. Schöning

For a Luso-British joint project with

THANK YOU FOR YOUR ATTENTION

