IS**2**M

M. Cranney, F. Vonau, D. Aubel, E. Denys, L. Simon

Institut de Sciences des Matériaux de Mulhouse, France

C. Bena

ORSA

University

Sheffield.

The

LPS, Orsay and IPT, CEA-Saclay, France

P.B. Pillai, M.M. De Souza

Dpt of Electronic and Electrical Engineering, Sheffield, UK

Resonators created by intercalated gold nanoclusters under monolayer graphene on SiC

Epitaxial Graphene on SiC(0001)

SiC(0001), n doped, annealing above 1500 K
 ⇒ formation of a Buffer Layer (BuL)
 ⇒ mostly monolayer graphene (ML)

• EG intrinsically n-doped : charge transfer from SiC(0001) to graphene $E_D - \epsilon_F \approx -0.45 \text{ eV}$ •A. Bostwick et •L. Vitali et al, S

•A. Bostwick et al, Nat Phys 3, p. 36 (2007)

- •L. Vitali *et al*, Surf Sci 602, p. L127 (2008)
- •F. Varchon et al, PRL 99, p. 126805 (2007)

Motivation: p-doping of epitaxial graphene by depositing Au

•T. Ohta et al, Science 313, p. 951 (2006)

•I. Gierz et al, Nanolett 8, p. 4603 (2008)

Deposition of Au on Epitaxial Graphene

- $\boldsymbol{\cdot}$ Deposition of several ML Au at RT, followed by short annealing cycles at 1000K
- Omicron LT-STM working at 77K (10⁻¹¹ mbar range)

• Intercalated Gold structures between Buffer Layer and Monolayer Graphene :

- Film Phase (FP): intercalated monolayer of Au, free-standing \Rightarrow p doping
- \cdot Diluted Phase (DP): intercalated $\mathbf{Au}_{\mathbf{6}}$ clusters, with an irregular distribution

(2.2 ±0.1 nm between clusters), free-standing \Rightarrow **no p doping**

Deposition of Au on Epitaxial Graphene

- $\boldsymbol{\cdot}$ Deposition of several ML Au at RT, followed by short annealing cycles at 1000K
- Omicron LT-STM working at 77K (10⁻¹¹ mbar range)

• Intercalated Gold structures between Buffer Layer and Monolayer Graphene :

- Film Phase (FP): intercalated monolayer of Au, free-standing \Rightarrow p doping
- \cdot Diluted Phase (DP): intercalated \mathbf{Au}_{6} clusters, with an irregular distribution

(2.2 ±0.1 nm between clusters), free-standing \Rightarrow **no p doping**

Diluted Phase

- Standing wave patterns at positive energies
 - (2x2) bright protrusions

dI/dV map

TNT2010

topography (2.5 × 3.2 nm², +0.8 V)

Au clusters act as scatterers, perturbing the quasiparticles on the top graphene layer

From STS to CEC

No wave pattern in DP at -0.7 V

(dI/dV map, 19 × 19 nm², -0.7 V)

FT-conductance image

TB Band structure of graphene

Κ

Fourier Transform

From STS to CEC

No wave pattern in DP at -0.7 V

JDOS calculation with CECs :

all scattering wave vectors q = k - k' + G

IS2M

TNT2010

CECs must be in contact to see elliptical features in M \Rightarrow band-crossover begins at +0.7 eV

TNT2010

Size of the ellipse is increasing with V

TNT2010

By using JDOS calculations

Van Hove Singularities at high energies

Summary about Au/Epitaxial Graphene

•Au atoms intercalate between Buffer Layer and Monolayer Graphene

•Diluted phase \Rightarrow flat Au₆ clusters, with no p-type doping of ML graphene

•Standing wave patterns are observed on the Diluted Phase for unoccupied states \Rightarrow Au clusters are acting as scatterers, perturbing the QP on the graphene

•Standing waves due to intervalley scattering at the band-crossover

Possible effects of Au clusters on the band structure of graphene :
Dispersion is lost from +0.7 eV to +1.0 eV
Extension of the Van Hove Singularities

•There are still questions:

•Why no intravalley scattering? Absence not related to the pseudospin

•Why is the band structure modified like this by Au clusters?

B. Premlal *et al*, APL 94, p. 263115 (2009)
M. Cranney *et al*, accepted in EPL

Thank you !

Thanks to my co-workers:

F. Vonau D. Aubel

L. Simon

IS2M - Mulhouse, France

C. Bena

LPS - Orsay, France

P.B. Pillai M.M. De Souza

DEEE - Sheffield, UK

Financial support:

Fundamentals of NanoElectronics

TNT2010