Nanodroplet deposition and manipulation with an AFM tip

Université de Toulouse Laure Fabié, Hugo Durou, Thierry Ondarçuhu

Nanosciences Group, CEMES-CNRS Toulouse (France)

Direct deposition methods

Liquid lithography

Pin and Ring method (DNA chips)

Inck jet De Gan et al., Adv Mat 2004

Pins

Belaubre et al., APL 2003

 $\sim 200 \ \mu m$

- flexibility +
- -- Ø ~ 5 to 200 μm

Dip pen lithography

+ $\emptyset \sim 10$ nm

limited in terms of ---transferrable molecules no reservoir ____

Direct deposition methods

Liquid lithography

Pin and Ring method (DNA chips)

Inck jet De Gan et al., Adv Mat 2004

Pins

Belaubre et al., APL 2003

 $\sim 200 \ \mu m$

10 µm

Few µm

Dip pen lithography

NADIS : Liquid NAnoDISpensing

Meister et al, *Appl. Phys. Lett.* 2004 A.Fang, E. Dujardin, T.Ondarçuhu, *NanoLett* 2006

Tip fabrication

Channel milling by FIB

Standard AFM tip: pyramidal and gold coated

2 steps : (i) thinning of the tip wall from the top (ii) milling at the tip apex from the tip side (record : 35 nm)

Surface functionnalisation

Intact gold layer (thiol chemistry)

2 distinct areas : Si_3N_4 surface for silane chemistry and gold layer for thiol treatment

Tip loading

Deposited liquid

- ➤ Glycerol or glycerol-water mixture (dilution max 6:4)
- > Solutions of molecules, proteins, nanoparticles...

Loading of the reservoir

and a micromanipulator

Deposition process

Deposition

Nanodroplet deposition : with an AFM in force spectroscopy mode

Line deposition : with an AFM in contact mode and using a nanopositioning table

Deposition process

Deposition

Nanodroplet deposition : with an AFM in force spectroscopy mode

Line deposition : with an AFM in contact mode and using a nanopositioning table

Force curve recorded during liquid transfert

Deposition process

Deposition

Nanodroplet deposition : with an AFM in force spectroscopy mode

Line deposition : with an AFM in contact mode and using a nanopositioning table

Force curve recorded during liquid transfert

Deposit observation (after solvent evaporation)

Nanodroplet deposition

Hydrophilic tip with an aperture of 400nm

Hydrophobic tip with an aperture of 35nm

(treated with dodecanethiol)

The influence of the different parameters is studed in : A. Fang, E. Dujardin, T.Ondarçuhu. *NanoLett* (2006)

Flexibility of the method

Nanopatterning conclusion

Study of the deposition mechanisms

Final deposits due to :

Flow through the channel

> spreading on the substrate surface

Analyse of the retraction force curves

Force curve study :

> understanding the deposition mechanisms

Z F

> capillary force

Modeling with Surface Evolver

> Energy minimization for different boundary conditions and constraints

Hydrophilic NADIS tips

Boundary conditions : fixed radii on the tip and on the substrate

Channel of 35nm

Channel of 280nm

Lines deposition

NADIS tip is moved at constant velocity while maintaining contact onto the surface thanks to a nanopositioning table incorporated to the AFM

Velocity increasing

Phase image for a better contrast

Spreading dynamics

Spreading dynamics

Results of the model

For $\theta_m = \theta$, analytical solution : $R-R_{\theta} = At^{1/4}$

For $\theta_m \neq \theta$, numerical solution

$$\left(\frac{h}{R-R_0}\right)^3 = \theta_m^3 + 9\alpha \frac{dR}{dt}$$

 θ_m =3.5° R_0 =380nm ln(L/l)=10 α =238s/m untreated tip: h=56nm Hydrophobic tip : h=42.5nm

20

Results of the model

For $\theta_m = \theta$, analytical solution : $R - R_{\theta} = At^{1/4}$

For $\theta_m \neq \theta$, numerical solution

$$\left(\frac{h}{R-R_0}\right)^3 = \theta_m^3 + 9\alpha \frac{dR}{dt}$$

 θ_m =3.5° R_0 =380nm ln(L/l)=10 α =238s/m untreated tip: h=56nm Hydrophobic tip : h=42.5nm

Conclusion

Efficient method for nanopatterning

Fundamental studies

> Study of the capillary force at the nanoscale

useful for AFM imaging

> Spreading dynamics at constant pressure

interesting for printing techniques

