

Dynamical Mean-Field Theory For Molecular Electronics

David Jacob

Max-Planck-Institut für Mikrostrukturphysik Halle, Germany

TNT2010

Braga, 7.9.2010

The Kondo effect in a nutshell

Anderson Impurity Model

At low temperatures

$$\begin{aligned} \mathbf{\hat{T}}_{\text{AIM}} &= \sum_{\sigma} \epsilon_d \, d_{\sigma}^{\dagger} d_{\sigma} + U \, d_{\uparrow}^{\dagger} d_{\uparrow} \, d_{\downarrow}^{\dagger} d_{\downarrow} \\ &+ \sum_{k\sigma} \epsilon_k \, c_{k\sigma}^{\dagger} c_{k\sigma} + \sum_{k\sigma} (V_k \, c_{k\sigma}^{\dagger} d_{\sigma} + h.c.) \end{aligned}$$

Magnetic Moment is screened!

Kondo effect of Magnetic Adatoms on Metal Surfaces

Fano formula for conductance:

Madhavan *et al.*, Science **280**, 567 (1998) Schiller and Hershfield, PRB **61**, 9036 (2000)

Kondo effect in *ferromagnetic* nanocontacts?

M. R. Calvo et al., Nature 458, 1150 (2009)

- Is it really Kondo effect?
- If yes how is it possible?
- Very interesting and rich physics
- Important questions for possible applications
- Ab initio theory needed that is able to predict strong correlation effects such as Kondo

DFT based quantum transport calculations

(1) Ab initio Density Functional Theory calculations of device and leads

(2) Lead Self-energies:

$$\Sigma_{\mathrm{L}}(\omega) = \mathbf{V}_{\mathrm{L}}(\omega + \mu - \mathbf{H}_{\mathrm{L}})^{-1} \mathbf{V}_{\mathrm{L}}^{\dagger}$$

$$\boldsymbol{\Sigma}_{\mathrm{R}}(\omega) = \mathbf{V}_{\mathrm{R}}(\omega + \mu - \mathbf{H}_{\mathrm{R}})^{-1} \mathbf{V}_{\mathrm{R}}^{\dagger}$$

(3) Device Green's function:

$$\mathbf{G}_{\mathrm{D}}^{\mathrm{KS}}(\omega) = \frac{1}{\omega + \mu - \mathbf{H}_{\mathrm{D}}^{\mathrm{KS}} - \boldsymbol{\Sigma}_{\mathrm{L}}(\omega) - \boldsymbol{\Sigma}_{\mathrm{R}}(\omega)}$$

Landauer Transport formalism:

$$T(\omega) = \operatorname{Tr} \left[\Gamma_{\mathrm{L}}(\omega) (G_{\mathrm{D}}^{\mathrm{KS}})^{\dagger}(\omega) \ \Gamma_{\mathrm{R}}(\omega) G_{\mathrm{D}}^{\mathrm{KS}}(\omega) \right]$$
$$I(V) = \frac{2e}{h} \int d\omega (f_{\mathrm{L}}(\omega) - f_{\mathrm{R}}(\omega)) T(\omega)$$
$$\mathcal{G}(V) = \frac{2e^{2}}{h} \times T(eV)$$

Implemented in **ALACANT** software package based on GAUSSIAN and CRYSTAL (J.J. Palacios and D. Jacob)

D. Jacob and J.J. Palacios, arXiv:1008.4538

DFT based quantum transport calculations

T(ω)

How to incorporate dynamic correlations

Starting point:

Ab initio **Density Functional Theory** calculations of **Device** and **Leads**

Correlated Device Green's function:

$$\mathbf{G}_{\mathrm{D}}(\omega) = \frac{1}{\omega + \mu - \mathbf{H}_{\mathrm{D}}^{\mathrm{KS}} - \boldsymbol{\Sigma}_{\mathrm{L}}(\omega) - \boldsymbol{\Sigma}_{\mathrm{R}}(\omega) - \boldsymbol{\Sigma}_{\mathrm{d}}(\omega)}$$

Conductance and current in general: Meir-Wingreen

$$I(V) = \frac{1}{2} \int d\omega \operatorname{Tr} \left[(\Gamma_{\rm L} - \Gamma_{\rm R}) \mathbf{G}_{\rm D}^{<} + (f_{\rm L} \Gamma_{\rm L} - f_{\rm R} \Gamma_{\rm R}) \mathbf{A}_{\rm D} \right]$$

For small bias and low temperature: Landauer

$$\mathcal{G}(V) = \frac{2e^2}{h} \times T(eV)$$

$$T(\omega) = \operatorname{Tr}\left[\Gamma_{\mathrm{L}}(\omega)G_{\mathrm{D}}^{\dagger}(\omega) \ \Gamma_{\mathrm{R}}(\omega)G_{\mathrm{D}}(\omega)\right] \qquad I(V) = \frac{2e}{h} \int d\omega (f_{\mathrm{L}}(\omega) - f_{\mathrm{R}}(\omega))T(\omega)$$

How to calculate the Self-Energy: OCA Impurity solver

$$\mathcal{H}_{3d} = \sum_{i} \epsilon_{d}^{(i)} \hat{n}_{d}^{(i)} + \sum_{ijkl\sigma\sigma'} U_{ijkl} d_{i\sigma}^{\dagger} d_{j\sigma'}^{\dagger} d_{k\sigma'} d_{l\sigma} \xrightarrow{\text{Exact}} \sum_{m} E_{m} |m\rangle \langle m|$$
Diagonalization

Many-body eigenstates $|m\rangle$ — Pseudo Particles $\hat{a}_m^{\dagger}, \hat{a}_m$

Hybridization function: $\Delta_d(\omega) = \omega + \mu - \mathbf{H}_d - [\mathbf{P}_d \mathbf{G}_D^{\mathrm{KS}}(\omega) \mathbf{P}_d]^{-1}$

Perturbation Expansion in *Hybridization Strength*:

$$G_{m}(\omega) = (\omega + \mu - E_{m} - \Sigma_{m}(\omega))^{-1} =$$

$$\overset{\Delta(\omega)}{\longrightarrow} + \overset{(m')}{\longrightarrow} + \overset{(m')}{$$

K. Haule *et al.*, PRB **64**, 155111 (2001)

G. Kotliar et al., RMP 78, 865 (2006)

Magnetic impurity in Cu nanocontact Hybridization function

Results: Co impurity

PDOS

Conductance

Occupation of $d_{xz}+d_{yz} = 3 =>$ Spin 1/2 U = 5 eV and J = 1eV

D. Jacob et al., Phys. Rev. Lett. 103, 016803 (2009)

Results: Co impurity

Conductance

D. Jacob et al., Phys. Rev. Lett. 103, 016803 (2009)

Molecular DMFT:

Dynamical Mean-Field Theory for nanoscopic conductors

Two Ni atoms in Cu nanocontact

Ni nanocontact between Cu wires

D. Jacob *et al.*, arXiv:1009.0523

Graphene + Co

Conclusions

- Molecular DMFT
- Dynamic Correlations incorporated into ab initio quantum transport
- Kondo effect in nanoscopic conductors from first principles

Acknowledgments

- G. Kotliar (Rutgers U)
- K. Haule (Rutgers U)
- J. J. Palacios (UAM)
- J. Fernández-Rossier (UA)
- C.Untiedt (UA)
- M.R. Calvo (Imperial College)
- E. K. U. Gross (MPI Halle)

References:

- D. Jacob *et al.*, arXiv:1009.0523
- D. Jacob et al., Phys. Rev. Lett. 103, 016803 (2009)
- M. R. Calvo et al., Nature 458, 1150 (2009)

ALACANT Software: www.alacant.dfa.ua.es

D. Jacob and G. Kotliar, Phys. Rev. B 82, 085423 (2010)

THANK YOU!!!!

Kondo effect in Spin-1 Molecules

Parks et al., Science 328, 1370 (2010)

