

Non-volatile memory using Optically-Gated Carbon Nanotube FET: Description of carrier mobility model in P3OT and hopping mechanism at SiO₂-P3OT interface

Si-Yu LIAO, Montassar NAJARI, Cristell MANEUX, Sebastien Fregonese, Thomas Zimmer IMS-Bordeaux Lab., Université Bordeaux 1, Talence, France

Trends in Nanotechnology 2010, Sep. 07, 2010

General purpose

- Part 1 : The modeling of Non-volatile memory using Optically-Gated Carbon Nanotube FET (OG-CNTFET)
 - Memory operations description & modeling
 - Electrical equivalent circuits
- Part 2 : Description of carrier mobility model in P3OT and hopping mechanism at SiO₂-P3OT interface
- Part 3 : Including Schottky Barrier at the drain/source contact of the OG-CNTFET modeling

What is OG-CNTFET ?

UNIVERSITÉ DE BORDEAUX

From CNTFET to OGCNTFET

TNT2010, Sep. 07, 2010, Braga, Portugal

Part 2: Mobility in P3OT

Part 1: Device Modeling

(a) AFTER ILLUMINATION

Hypotheses:

- Positive $V_{\rm DS}$ modulates the positive $V_{\rm CNT}$ which homogenously detraps interface charges in the near channel zone.
- Charge evacuations pass through the CNT channel.

Part 1: Device Modeling

Modeling:

- The current source of Shockley-Read-Hall (SRH) surface recombination depends on V_{DS} and $V_{\text{GS}}.$

Part 2: Mobility in P3OT

Part 3: Schottky contacts

Part 2: Mobility in P3OT

Part 1: Device Modeling

Part 3: Schottky contacts

- Part 1: The modeling of Non-volatile memory using OG-CNTFET
- Part 2: Description of carrier mobility model in P3OT and hopping mechanism at SiO₂-P3OT interface
 - Description of electron hopping and carrier mobility in P3OT
 - Electron mobility modeling
 - Relaxation current modeling
- Part 3 : Including Schottky Barrier (SB) at the drain/source contact of the OG-CNTFET modeling

- Electron mobility of P3OT in low field range.
- Relaxation current :

$$I_{relax} = (V_{Laseri} - V_{CNT}) \div [R_{P3OT}] \div [Rate_{relax}] = (V_{Laseri} - V_{CNT}) \cdot [Y_{P3OT}] \cdot Rate_{relax}$$

with $\frac{1}{R_{P3OT}} = Y_{P3OT} = [\sigma_{P3OT}] \frac{Area}{length}$
Electron hopping probability

• Conductivity of P3OT :

Part 1: Device Modeling

$$\sigma_{P3OT} = N_m e \mu_{P3OT} \approx N_d e \left(\mu_{P3OT} \right) = N_{trap} e \mu_{P3OT}$$

Part 2: Mobility in P3OT

Pool-Frenckel model (PF):

- The mobility is described as a electric field and temperature assisted detrapping process of a carrier from the Coulomb potential of a charge trap.
- Pros: good fitting in wide electric field range
- Cons: no physical clue about the nature of the process

Part 1: Device Modeling

$$\mu = \mu_0 \exp\left(-\frac{E_0 - \alpha \sqrt{F}}{kT_{eff}}\right)$$

with $\frac{1}{T_{eff}} = \frac{1}{T} - \frac{1}{T_R}$

Gaussian disorder model (GDM):

- GDM transport is supposed to proceed by means of hopping in a Gaussian site-energy distribution, caused by fluctuation in conjugation lengths and structural disorder.
- Pros: point out clearer the physics
- Cons: validation only in high electric field range

$$\mu(F,T) = \mu_{\infty} \exp\left(-\left(\frac{2\sigma}{kT}\right)^{2} + C\left[\left(\frac{\sigma}{kT}\right)^{2} - \Sigma^{2}\right]\sqrt{F}\right)$$

Part 3: Schottky contacts

Ref : V. Kazukauskas et al., Eur. Phys. J. Appl. Phys., 37 (2007) 247-251.

Part 2: Mobility in P3OT

TNT2010, Sep. 07, 2010, Braga, Portugal

- Hypothesis:
 - Non-volatile relaxation = null bias = null field

$$\mu_{P3OT} \approx \mu_0 \exp\left(-\frac{E_0}{kT_{eff}}\right) = \mu_0 \exp\left(-\frac{E_0}{kT} \cdot \frac{T_R - T}{T_R}\right)$$
$$\sigma_{P3OT} \approx N_{trap} e \mu_0 \exp\left(-\frac{E_0}{kT} \cdot \frac{T_R - T}{T_R}\right)$$

• Relaxation of P3OT is temperature depended:

Part 1: Device Modeling

$$I_{relax} = \left(V_{Laseri} - V_{CNT}\right) \cdot \left(N_{trap} e \mu_0 \exp\left(-\frac{E_0}{kT} \frac{T_R - T}{T_R}\right) \frac{L_G d_{CNT}}{length}\right) Rate_{relax}$$

P3OT conductance under low electric field

Part 2: Mobility in P3OT

- Part 1: The modeling of Non-volatile memory using OG-CNTFET
- Part 2: Description of carrier mobility model in P3OT and hopping mechanism at SiO2-P3OT interface
- Part 3:Including Schottky Barrier (SB) at the drain/source contact of the OG-CNTFET modeling
 - Modeling the Schottky barrier by the effective SB approach
 - Simulation result analysis

Motivation and modeling of Schottky contacts

Effective Φ_{SB} :

Part 1: Device Modeling

- 0 > E_{injection} > $\Phi_{SB_{eff}}$, T (transmission propability) = 0; else, T = 1.
- Charge injection computing starts from $\Phi_{SB eff}$.

$$\Phi_{SB}^{eff} = \left(\Phi_{SB} - \left(\Phi_{G} + \Phi_{bi}\right)\right) \exp\left(\frac{-d_{tunnel}}{\lambda_{Schottky}}\right) + \left(\Phi_{G} + \Phi_{bi}\right)$$

Ref : J. Knock et al., Phys. Stat. Sol. (a)., 205, 4, 679-694, 2008.

Part 3: Schottky contacts

Part 2: Mobility in P307

Transmission coefficient

Normalized drain current

Before improvement

16/22

Measurements after optical writing

Simulation results

Part 3: Schottky contacts

TNT2010, Sep. 07, 2010, Braga, Portugal

Part 2: Mobility in P3OT

Part 1: Device Modeling

Comparison: Influence of Schottky contacts

- OG-CNTFET Modeling :
 - Optical gating, V_D programming, and gate bias protection of programming are physically modeled.
 - The compact model is adapted for ADS and Cadence.
- Description of mobility in P3OT and electron hopping :
 - The trapped electron relaxation is modeled by hopping mechanism at SiO₂/P3OT interface.
 - Pool-Frenckel mobility model is adapted for P3OT conductivity under non-volatile memory condition.
- Including drain-source Schottky contacts in OG-CNTFET :
 - The Schottky barrier is converted to effective Schottky barrier on the channel potential.
 - The effective Schottky barrier computing is improved for not only the OG-CNTFET bias range, but also for the one of normal CNTFET.

From inputs/parameters to outputs

- Supported by the French National Research Agency ANR PANINI project
- at CEA-LEM (Saclay): Dr. Vincent Derycke
- at IEF (Université Paris Sud): Jean-Marie Retrouvey, Dr. Jacques-Olivier Klein, Dr. Weisheng Zhao, Dr. Guillaume Agnus, Dr. Nha Nguyen, Pr. Sylvie Galdin-Retailleau, Dr. Philippe Dollfus

Thanks for your attention

