

Self-Assembly and Directed Assembly of Gold Nanorods

Luis M. Liz-Marzán

Universidade de Vigo, Spain

http://webs.uvigo.es/coloides/nano

Institute of Physical Chemistry, University of Hamburg, Germany

Nanotechnology

"Development of research and technology at atomic, molecular or macromolecular levels, in a scale of approximately 1-100 nm, to obtain a fundamental comprehension of phenomena and materials in such nanometric scale and to create and use structures, devices and systems possessing new properties and functions due to their size..."

Nanoparticle Assembly

Control of the detailed structure of matter on the finest possible scale is a major goal of chemistry, materials science and nanotechnology. This goal may be approached in two steps: first, the construction of individual molecules through synthetic chemistry; and second, the arrangement of molecular building blocks into larger structures.

Erik Winfree*, Furong Liu†, Lisa A. Wenzler† & Nadrian C. Seeman† NATURE|VOL 394|6 AUGUST 1998

NATURE|Vol 451|31 January 2008

Self-Assembly

C.B. Murray, IBM, U. Penn

Directed self-assembly by external fields

Grzelczak et al., ACS Nano 2010, 4, 3591

The anisotropic optical response of Au rods

Chemistry as a "Directing Agent" for nanorod assembly

Preferential End-to-End Assembly of Gold Nanorods by Biotin-Streptavidin

Connectors

K. K. Caswell, James N. Wilson,[†] Uwe H. F. Bunz,^{*,†} and Catherine J. Murphy*

J. AM. CHEM. SOC. 2003, 125, 13914-13915

J. Phys. Chem. B 2006, 110, 150-157

Gold Nanorods to Nanochains: Mechanistic Investigations on Their Longitudinal Assembly Using α, ω -Alkanedithiols and Interplasmon Coupling

S. T. Shibu Joseph, Binil Itty Ipe, P. Pramod, and K. George Thomas* Photosciences and Photonics, Regional Research Laboratory (CSIR), Trivandrum 695 019, India

Weihai Ni,* Ricardo A. Mosquera, Jorge Pérez-Juste, and Luis M. Liz-Marzán*

Self-Assembly of Gold Nanorods Induced by Intermolecular Interactions of Surface-Anchored Lipids

Hiroshi Nakashima,* Kazuaki Furukawa, Yoshiaki Kashimura, and Keiichi Torimitsu

Phospholipids vs. Gemini surfactants

Gemini or dimeric surfactants are now available as excellent scaffolds for structurally mimicking the bilayer formation of lipids in water.

Self-assembly of gemini surfactants

Gemini surfactants with different spacer lengths lead to control over interfacial aggregate geometry at solid-liquid interfaces.

(oligooxa)alkanediyl- α, ω bis(dimethyldodecylammonium bromide

Synthesis of gold nanorods using gemini surfactants

Gem1-NRs vs. CTAB-NRs

A. R. ~ 3.0 *A. R.* ~ 4.0

Self-assembly of Gem1 Au nanorods

Au nanorod Self-assembly: CTAB vs. Gem1

Self-assembled Gem1 Au nanorods: Optical response

Gem1-NRs

C(Gem1) > CMC

C(NRs) ≈ 10⁻⁶ M

ITO substrate

Au nanorod Self-assembly: mechanism?

Synthesis of Au Nanowires

Self-assembly of Au NWs@oleylamine

Pazos-Pérez et al., Langmuir 2008, 24, 9855

