

Magnetale Nanostructures

D. Martín-Becerra^{‡,1,2}, J. B. González-Díaz¹, V. V. Temnov³, A. Cebollada¹, G. Armelles¹, T. Thomay⁴, A. Leitenstorfer⁴, R. Bratschitsch⁴, A. García-Martín¹, M. U. González¹

¹IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, E-28760 Tres Cantos, Madrid, Spain.
²International Iberian Nanotechnology Laboratory, 4710-229 Braga, Portugal.
³Department of Chemistry, Massachusetts Institute of Technology, Cambridge (MA), USA
⁴Department of Physics and Center for Applied Photonics, University of Konstanz, Germany
[†]diana.martin@imm.cnm.csic.es

SPP are very interesting since their properties make them promising for optoelectronic applications: Plasmon circuitry, sensing, etc.

Magnade Nanosquiedures

eneo Pernones

Problem: how can one control/modify the plasmon properties?
 We need active control over the device performance

* "Active" plasmonic devices, we control the SPP properties with an external agent; our choice: <u>magnetic field</u> wavevector modulation

Demonstrative device interferometer
 int

Plasmons

Surface Plamons

Surface Plasmon Polaritons (SPPs) are electromagnetic waves that propagate along a metal-dielectric interface and are coupled to the free electrons in the metal.

Magnade Nanosquieduras

- EM field confined to the metal-dielectric interface.
- Very sensitive to the materials

Surface Plamons

 $\epsilon_{\rm m}$ =dielectric constant of the metal $\epsilon_{\rm diel}$ =dielectric constant of the dielectric

Magnesis Nanossillesinas

Magneto Plasmonics

 $k_{SP} >> k_{light}$

We need "something" that provides that "extra" momentum

a "defect" on our metal surface

Interferometer

Classic Interferometer

A. A. Michelson, E. Morely. 1887

Plasmon Interferometer

Magnade Nanosquiedures

Magnetic Field

Magnetic field

Transversal configuration. Magnetization is on the sample plane, and it's perpendicular to the incidence plane. M is perpendicular to k_{sp}

y

Plasmon Interference + Interferometer

Experimental Setup

Samples

Au

Co

Au

Ζ

 \square

Glass+ 2Cr+Trilayers Au/6Co/15Au 200nm thick Sputtering groove Slit: 100 nm width slit Groove: 200 nm width, 100nm depth FIB d0 SP Groove Motives: slit & groove : 50µm long Θ=5-10^o, d_o =0,10 and 20 μm $\vec{R} \bullet$ 6 interferometers per sample Slit

Lasers: 532, 633, 690, 785, 860, 890 nm

Mathematics of the experiment

Maths

 $I_{MP} = \Delta I(M) = I(M) - I(-M)$, First order approximation:

$$I_{MP} \approx (-2 \cdot \Delta k_{sp}^{r} \cdot d) \sqrt{I_{sp}} \sqrt{I_{r}} \left[Sin(k_{sp0}^{r} \cdot d + \varphi_{0} + \Phi) \right] \text{AC}$$
$$\tan \Phi = \frac{\Delta k_{sp}^{i}}{\Delta k_{sp}^{r}}$$
We obtain both Δk^{r} and $\Phi(\Delta k^{i})$

Magnesic Nanossiniesines

Magineto Plasmonies

Example of a measurement: Δk^r and Φ (Δk^i)

Magnetale Nanostructures

Meenero Hermonies

Wavelength dependece of Δk^{real} and Δk^{im}

Results: Δk^{real} and Δk^{im}

Magnade Nanosquaduras

Δk_{SP} and MO constants

Magnade Nanosquaduras

Analytical expression for air and gold infinite. Co layer extremely thin. Continuity conditions of the fields and no waves incoming to the system.

$$\Delta k_{sp} \approx \frac{4iz_{Co} \cdot (k_0 \varepsilon_{air} \varepsilon_{Au})^2}{(\varepsilon_{air} + \varepsilon_{Au}) \cdot (\varepsilon_{air}^2 - \varepsilon_{Au}^2)} \left(\frac{\varepsilon_{yz}}{\varepsilon_{xx}}\right)_{Co} M_x \cdot e^{-2k_{zAu} \cdot z} \approx$$

Dispersion Relation: k^{real} and k^{im}

Magnesis Nanossillesinas

At 3,5·10¹⁵ s⁻¹ the actual plasmon is "more metallic" than at other frequencies

Dispersion Relation Vs Modulation of k_{SP}^{real}

Magnade Nanosquiedures

Neemero Hermonies

Shape of Spectral evolution of Δk^r_{SP} and Δk^{im}_{SP} is mainly determined by SPP dispersion relation!

Conclusions

Conclusions

- Magnetic field induces a modulation on k_{SP.}
- Active device: Interferometer
- Spectral evolution of Δk_{SP} is mainly determined by the dispersion relation of the SPP

Thank you very much!!

Funding:

