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Nanometrology and Nanotechnology

• Critical to enable the industrial uptake of nanotechnology

• Necessary to measure:

– Product characteristics device performance toxicologyProduct characteristics, device performance, toxicology 
(potential public health risks), product lifetime, security

• Requirements for manufacturable technology• Requirements for manufacturable technology

– Standardisation, regulation – repeatable and universal

– Easy to operate

– Developed in coordination with manufacturing techniquesp g q

• Integrated, in-line, real-time, advanced process control
• Relevant measurands
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Nanometrology Challenges

• Miniaturisation – things are getting smaller

• Heterogeneous integration – things are getting more 
complex

– 3rd Dimension increasingly used
– Dimensions and material properties

• Insufficient standardisation of techniques or  reference 
samplessa p es

• Existing methods are slow, often destructive and not 
optimised for 3Doptimised for 3D
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Metrology challenges for Nanofabrication

• Critical dimension measurement < 50 nm
S i d t lith h d 32 (2011)

Intel SRAM

Semiconductor lithography node 32 nm (2011)
Critical dimensions and physical properties

45nm

• 3D Structure
Complex: Typical of heterogeneous integration, interconnects

• In-situ, inline, real-time

S. Landis et al, Nanotechnology (2006) B.Chao, Proc SPIE 6921 (2008)Ye et al, Langmuiir 22 7378 
(2006).3D Photonic crystal in Si 
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Metrology techniques for nanoscale – limitations

• SEM  For height, slope, profile, requires 
destructive cross sectiondestructive cross-section.  

• AFM  Difficult to access sidewalls, corners, 
l ti l l

1m

A.E. Vladar et al, Proc SPIE 69220H
relatively slow

• TEM  Resolution ~ 0.1 nm. 

 Destructive, slow

• X-ray Imaging  Requires synchrotron x-ray B.C. Park et al, Proc. SPIE 651819X ray Imaging  Requires synchrotron x ray 
source

• Optical Scatterometry• Optical Scatterometry

Wi t h N T h l Ltd

 Requirement of wavelength, 
polarization or angle variability.

7Trends in Nanotechnology, 10th September 2010, Braga, Portugal

C. David et al, Proc. MNE 2008

Wintech Nano-Technology Ltd



Nanoimprint Lithography (NIL)

Advantages 

• Resolution (sub 10 nm)
Stamp (Si, Quartz, etc) 

Resist (polymer  monomer) Resolution (sub 10 nm)
• Fast (sec/cycle)
• Low cost ($0.2M vs $25M)
• Simple

Substrate 
Resist (polymer, monomer)

mp
• Flexible (UV, heat)

Applications  

Imprint 
(Pressure +heat or UV light) 

• Semiconductors
• Optics
• Bio

Release
(cool down ) 

Bio
• Organic electronics
• Sensors

Hi h l ti  C l  tt F ti l d i

RIE of residual layer 

High resolution Complex patterns Functional devices
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Sub-wavelength diffraction metrology

• Test structures of blazed gratings  asymmetric diffraction pattern 

• Individual lines < diffraction limit Groups of lines > diffraction limit• Individual lines < diffraction limit. Groups of lines > diffraction limit

• Sub-wavelength features in grating eg  Line-width, height, defects, sidewall 
angle, curvature. Linewidths: 50, 100, 150,  … 350nm

• Defects affect relative intensity of diffraction orders in far-field

• Suitable for transparent or opaque structures

• Non-destructive,  Fast collection of data
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Modelling of Sub-wavelength diffraction 
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Sub-wavelength diffraction measurement system

Laser
• In-line design 
• Sub wavelength diffraction

Sample

• Sub-wavelength diffraction 
metrology with surface imaging by 
microscope optics

Sample
CCD A –
diffraction 
patternz x

y

Microscope 
objective

• Enables centring of the laser spot 
on the gratings

j

CCD B –
image of surface
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Sub-wavelength – Detection of defects
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Sub-wavelength – Detection of defects

Line 53

Gap 58 nm
• Grating stamps made with average line-width from 193 –
214 nm

1 m

Line 53 
nm • Measured and modelled diffraction efficiencies (1st & 2nd 

order)  decrease with increasing line-width, by approximately 
5% per 5 nm

1/ 2 l ti diff ti ffi i d t

-2 Simulated on
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Diffraction from 3D Structures

• Polymer relaxes and partially reflows, 
creating rounded line profiles
• Measured diffracted order intensities• Measured diffracted order intensities 
before and after reflowing of the lines

Comparison of measured and simulated diffraction intensities for imprinted lines 
and reflowed lines

14Trends in Nanotechnology, 10th September 2010, Braga, Portugal

T. Kehoe, NNT 2010, 
Copenhagen, Denmark



Key steps for NIL – Polymer physical properties

1. Stamp fabrication Imprint 
(Pressure +heat or UV light) 

2. Imprinting process: Temp, Pressure, UV
Glass transition temperature, ViscosityGlass transition temperature, Viscosity

3. Demoulding: Mechanical strength
 Y ´ d l P i ’ ti Young s modulus, Poisson’s ratio
Adhesion / anti-sticking coating
 f

Release (cool down ) 

 surface energy

4. Etching: Polymer etch resistancetc g o y e etc es sta ce

At nanoscale values may change
RIE of residual layer 
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Photoacoustic Metrology

• Thickness measurements, resolution ~10 nm

• Acoustic scattering from interfaces changes surface reflectivity• Acoustic scattering from interfaces  changes surface reflectivity

• Acoustic speed  Physical parameters – Modulus, Poisson’s 

P P b L 70 f  810 Ti l ti 0 1• Pump-Probe Laser, 70 fs,  = 810 nm, Time resolution 0.1 ps

Partial Reflection from 
interfaces

Propagating 
acoustic waves

Pump: 70fs laser pulse 

Probe: Optical 
reflectivity change at y g
surface 

Laser absorption / generation 
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One-dimensional photoacoustic model

• Finite Element Simulation, including viscoelastic damping
• Measurement R + Thickness (Ellipsometry) + Optical / Physical 

properties (absorption, density)  Thermomechanical model

S laser power σexcit stress, T temperature, ε strain 
z depth
t time

 attenuation F sensitivity
ΔR reflectivity change

17Trends in Nanotechnology, 10th September 2010, Braga, Portugal



Photoacoustic Metrology of Nanoimprint Polymers

336 nm PMMA• Nanoimprint polymers
13 – 586 nm thick layers
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• Damping in polymer not excessive
• Good acoustic impedence  
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• Top interface: Al/polymer
• Bottom interface: polymer/Si

Time / ps
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• FilmThickness compared to 
ellipsometry and profilometry
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time of flight

Time / ps

mr-NIL 6000 2504 2.95 0.4 1008
J. Bryner, 2007 IEEE Ultrasonics Symposium, 2007 p 1409



Nanoscale Effects

• Acoustic speed and Young’s modulus increase below 80 nm

• Acoustic speed (c ) increases by 12%• Acoustic speed (cp) increases by 12%

• Young’s modulus (E) increases by 26% at 13 nm.

P i l f HMDS (H th ldi il ) dd d ll i• Primer layer of HMDS (Hexamethyldisilazane) added smaller increases

• Increase probably due to interface effects rather than confinement
i dAcoustic speed
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Raised Temperature Measurements

90 deg
• Investigation of physical properties 
approaching glass transition temperature, Tgapp oac g g ass t a s t o te pe atu e, g

• Acoustic speed inversely proportional to 
thickness

• Close to Tg increase of noise due to buckling 
of aluminium
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Examples of self-assembled structures

Block

10 nmVTT Protein crystals

Block 
copolymer 
nanophase 
separation
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3D periodic structures: eg. photonic crystals

Layer-by-layer MicroassemblyAutocloning

S Y Lin Sandial Lab 1998 K Aoki Semicon Lab 2003S Y Lin, Sandial Lab, 1998 K. Aoki, Semicon Lab, 2003

Holography Direct laser writing Artificial Opals

S Kawakami, Tohoku, 1997
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FCC colloidal crystals: Improving structural order

Equilibrium
crystallisation

Fast crystallisation Reduce interaction with substrate
-> reduce crack

Shear force to improve
crystal ordering

Improved quality using acoustic noise
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Acoustic 
vibration

A .Amman et al Proc. SPIE Vol. 6603, 660321 (2007) 



Quantifying order in self-assembly

• Define scale
M k h tibl ith i ti th d t l t• Make approach compatible with existing methods or at least 
acceptable

• In-line or a posteriori?p
• Reliable?
• Suitable for a standard?

2 μm

L = 0 dB                       L = 20 dB                     L = 30 dB                        L = 40 dB

24Trends in Nanotechnology, 10th September 2010, Braga, Portugal

 L = 20 dB is calibrated to water displacement of 2.5 μm



Concept of “opposite beads”

p(r) – probability of finding an opposite beads within a radius r, 
for a given tolerance parameter ε for the exact location of g p

the spheres
At sphere ‘A’
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Conditions met by p(r)

• Scalar quantity (dependence on certain predefined 
orientation undesirable)orientation undesirable)

• Integral measure of a locally observable quantity

• Based on actual position of sphere (not on pixel 
representation of SEM image: contrast & focus 
dependent)dependent)

• Robust against missing spheres.

Perfectly ordered system
0 04 ( ) 1 00 Th

( ) ( )
( ) 1A A AN r p r

p r  
0.04 ( ) 1.00p r 

0.06 ( ) 0.46p r 

Theory

Experiment
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SEM Characterisation

SEM images of size 65 μm x 40 μm 
(resolution: 3072 x 2304 pixels)

substrate
Drawing
direction

Opal

Position (P)Position (P)
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Stochastic-resonance in photonic crystal growth

D = 368 nm
r = 5.5 μm ≈ 15D, and ε = 43 nm ≈ 0.12D

P7P7

P10

Position (P)
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3 D ordering - Experimental approach

3D analysis2D analysis

θ – incident angleSEM images
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g
φ – azimuth angle

SEM images



Transmission spectra
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Rotational symmetry of T(φ)
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Noise Susceptibility: lattice planes dependency

Without
Noise

10x 5x
WithWith
Noise
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Conclusions

• New methods presented to characterise nanostructures fabricated by 
N i i t Lith h (NIL) d lf blNanoimprint Lithography (NIL) and self-assembly.

• Sub-wavelength diffraction found sensitive to defects, line-width and 
fprofile

– This is potentially in-line metrology method.

• Photoacoustic metrology demonstrated suitable for dimensional and 
physical measurement of printed structures

• We propose a robust and generic approach to analyse quantitatively 
two-dimensional lattice ordering.
– Opposite partners

– Rotational diffraction symmetry
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