Structural and electrical characterization of Si_{1-x}Ge_x nanocrystals embedded in Al₂O₃ matrix

*E. M. F. Vieira*¹, S.R.C. Pinto¹, A.G. Rolo¹, A. Chahboun^{1, 2}, S. Levichev¹, M. Buljan³, S.Bernstorff⁴, O. Conde⁵ and M. J. M. Gomes¹

¹ Physics Department and Centre of Physics, University of Minho, 4710 – 057 Braga, Portugal,

² LPS, Physics Department, Faculty of Sciences, BP 1796, Fès, Morocco

³ Rudjer Boskovic Institute, Bijenicka cesta 54, 10000 Zagreb, Croatia

⁴Sincrotrone Trieste, 34012 Basovizza, Italy

⁵ Physics Department, University of Lisbon and ICEMS, 1749-016 Lisboa, Portugal

Contact@-E-mail: eliana_vieira@fisica.uminho.pt

SiGe-based heterostructures are receiving a lot of interest not only from the point of view of device applications but also from the scientific point of view [1]. This is because SiGe heterostructures have a high potential to improve the state of Si devices particularly for very large scale integrated circuits (VLSIs) and add such new functions as optics and also provide a new scientific field of materials growth and characterization relating to the lattice mismatch between Si and Ge.

In order to fabricate high performance devices with $Si_{1-x} Ge_x$ nanocrystals, it is necessary to know and control their structural and electrical properties [2] which depend on several factors including particle size, shape and atomic composition.

In this work, $Si_{1-x}Ge_x$ nanostructures embedded in Al_2O_3 dielectrics were produced by RFsputtering. Raman spectroscopy, Grazing Incidence X-ray diffraction (GIXRD) and Grazing Incidence Small Angles X-ray scattering (GISAXS) techniques were used for the structural characterization of the produced systems. The analyses showed the formation of $Si_{1-x}Ge_x$ nanocrystals after a subsequent annealing (Figs. 1 and 2), and the nanocrystal size distribution and arrangement properties were determined. The electrical properties and carrier's retention effect in the formed nanostructures were studied by current-voltage characterization (Fig. 3).

References

[1] Y. Shiraki, and A. Sakai, Surf. Sci. Rep., vol. **59**, (2005) pp. 153-207
[2] L.J. Lauhonet all, Nature (London), vol. **57** (2002) pp.420

Figures

Fig.1. GIXRD pattern of $Si_{1-x}Ge_x$ NCs in alumina matrix. The two peaks are associated with the crystallographic planes of the $Si_{1-x}Ge_x$ alloy, respectively. The composition x and the NCs size are indicated on the figure.

Fig.2. Raman spectra of the sample (black) and Si substrate (red). The two peaks near 300 and 400cm⁻¹ correspond to the Ge-Ge and Ge-Si optical phonon modes, respectively.

