

Probing confined photons in nanoscale disordered media from inside

Rémi Carminati

Institut Langevin, ESPCI ParisTech, CNRS Paris, France

remi.carminati@espci.fr

People involved

"Physical optics and wave theory" group (ESPCI)

Romain PI ERRAT CNRS researcher

Etienne CASTANIE PhD student

Alexandre CAZE PhD student

Collaborations

Yannick DE WILDE (ESPCI)

Valentina KRACHMALNICOFF Post-doc

Mohamed ELABED Associate researcher

Rémi VI NCENT Post-doc (until July 2011)

Riccardo SAPI ENZA Niek van HULST (I CFO Barcelona, Spain)

MAIRIE DE PARIS 🥑

Coupling spontaneous emission with disorder

Fluorescence of nanosources in disordered media (photonic materials, imaging)

Nanophotonics - Light concentration on the nanoscale ("hot spots")

Novel light sources (e.g. random lasers)

Fundamental studies of light transport in scattering media (e.g. probing Anderson localization)

Outline

Spontaneous emission and plasmonics: From nano-antennas to disordered systems

Probing near-field interactions in volume disordered systems

Spontaneous decay rate

Probability of being excited at time $t = P(t) \propto \exp(-\Gamma t)$

Lifetime of excited state $\tau = 1/\Gamma$

Drexhage (1970) Chance, Prock, Silbey (1978)

- The spontaneous decay rate depends on the environment
- Perturbation theory:

$$\Gamma = \frac{2}{\hbar} \mu_0 \omega_{ge}^2 \left| \mathbf{p}_{ge} \right|^2 \operatorname{Im} \left[\mathbf{u} \cdot \mathbf{G} \left(\mathbf{r}_0, \mathbf{r}_0, \omega_{ge} \right) \mathbf{u} \right]$$

Wiley and Sipe, Phys. Rev. A 30, 1185 (1984)

Decay rate and LDOS

$$\Gamma = \frac{2}{\hbar} \mu_0 \omega^2 \left| \mathbf{p}_{ge} \right|^2 \operatorname{Im} \left[\mathbf{u} \cdot \mathbf{G} (\mathbf{r}_0, \mathbf{r}_0, \omega) \mathbf{u} \right]$$

is also very often written as (Fermi golden rule)

$$\Gamma = \frac{\pi \omega}{3\varepsilon_0 \hbar} \left| \mathbf{p}_{ge} \right|^2 \rho_{\mathbf{u}} (\mathbf{r}_0, \omega) \qquad \longleftarrow \qquad \begin{array}{c} \text{Local Density} \\ \text{of States (LDOS)} \end{array}$$

 $\frac{\Gamma}{\Gamma_0}$ = change in the LDOS

Interaction with a single nanoparticle

Nanoscale controlled experiments on single emitter

Peculiar optical properties of disordered metal films

Semi-continuous gold films on a glass substrate

P. Gadenne et al., J. Appl. Phys. 66, 3019 (1989)

V.M. Shalaev, Nonlinear Optics of Random Media (Springer, 2000)

Near-field intensity distribution – « hot spots »

Surface (TEM image) Gold on glass substrate

Grésillon et al., Phys. Rev. Lett. 85, 4520 (1999) ; Phys. Rev. B 64, 165403 (2001)

Localized and delocalized modes

Hot-spots modes on a fractal disordered film

« Inhomogeneous localization »

LDOS distributions on disordered metal films

Statistical distributions of Γ (LDOS)

LDOS fluctuations

Krachmalnicoff, Castanié, De Wilde, Carminati, Phys. Rev. Lett. 105, 183901 (2010)

The peak reveals modes localization

The peak in the LDOS fluctuations is the signature of localized plasmon modes

<u>Mode localization length</u> (inverse participation ratio)

$$R_{IP} = \frac{\int |\mathbf{E}(\mathbf{r})|^4 d^2 r}{\left[\int |\mathbf{E}(\mathbf{r})|^2 d^2 r\right]^2} \approx \frac{1}{\xi^2}$$
$$R_{IP} \approx \frac{1}{S} \frac{\langle \rho^2 \rangle}{\langle \rho \rangle^2}$$
$$\frac{1}{S} \frac{\langle \rho^2 \rangle}{\langle \rho \rangle^2} \approx \frac{1}{\xi^2}$$

Numerical simulations

Radiative and non-radiative decays can be separated

Castanié, Krachmalnicoff, Cazé, Pierrat, De Wilde, Carminati (2011)

Mapping radiative and non-radiative contributions

Non-radiative modes

Radiative modes

Castanié, Krachmalnicoff, Cazé, Pierrat, De Wilde, Carminati (2011)

Spontaneous emission and plasmonics: From nano-antennas to disordered systems

Probing near-field interactions in volume disordered systems

LDOS statistics from « numerical experiments »

Statistical distribution of decay rate Γ (LDOS)

- Resonant point scatterers
 (« atoms »)
- λ ≈ 630 nm
- Cluster size R = 1.2 μ m
- Exclusion volume $R_0 = 50 \text{ nm}$

Long tail: Near-field interactions

Cazé, Pierrat, Carminati, Phys. Rev. A 82, 043823 (2010)

Broad - asymmetric distribution of decay rates (LDOS)

Experiments: Sapienza, Bondareff, Habert, van Hulst, ICFO (Barcelona, Spain)

ZnO powder Polydisperse particles (140 ± 50 *nm*)

Photon mean free path

$$\ell = 0.9 \ \mu m$$
$$k\ell = 9.4$$

LDOS statistics probed by lifetime of nanosources (24 nm fluorescent beads)

Long tail controlled by near-field interactions

- Tail results from near-field interactions
- High Purcell factors (rare events)

 Photonic modes in complex systems can be probed with LDOS statistics

Evidence of spatially localized modes Radiative versus non-radiative decay

• Disordered photonic materials can lead to substantial modifications of spontaneous emission

Rare events can produce substantial changes Sensitive probe of nanoscale environment

