

Doping and sensingin Si nanowires

X. Cartoixà, A. Miranda-Durán, R. Rurali

Dept. d'Enginyeria Electrònica, Universitat Autònoma de BarcelonaInstitut de Ciència de Materials de Barcelona - CSIC

Summary

- Why nanowires?
- Substitutional dopants in NWs
• Molecular doping and gas sensi
- Molecular doping and gas sensing
- Conclusions

Beyond CMOS – Emerging devices

PERSPECTIVES: NANOTECHNOLOGY **Toward Nanocomputers** Greg K Tseng and James C. Ellenbogen Nanowires Carbon nanotubes \mathfrak{c} D Small organic molecules Biomolecules

SCIENCE'S COMPASS

Approaches to molecular-scale electronics. (A) Diodes and transistors based on semiconductor nanowires are assembled with microfluidics to form logic AND, OR, NOR, and XOR circuits and logic functions such as a half adder (7). (B) Carbon nanotube transistors (8) are connected by gold interconnects to construct logic circuits such as a NOT circuit, NOR circuit, static random access memory (RAM) cell, and ring oscillator (6). (C) Field-effect transistors based on self-assembled monolayers of polyphenylene molecules are combined to create a NOT circuit (11, 12). (D) Porphyrin molecules store digital information as electrical charges like dynamic RAM cells (20).

www.sciencemag.org SCIENCE VOL 294 9 NOVEMBER 2001

Common paradigm

Complementing lithographic techniques with *bottom-up* **fabrication** and **molecular selfassembly**

Advantages of Si nanowires

Good control of the electronic properties (always s**emiconducting**)

Ideal **integration** with the existing Si technology

Why impurities?

- Can we dope nanowires effectively?
- Is any VLS/VSS catalyst cleaner than the others?
- Will dopants segregate towards the surface?
• How soluble is P in a SiNNA?
- How soluble is P in a SiNW?

Y. Wang et al., Nature Nanotech. 1, 186 (2006)

Summary

- Why nanowires?
- Substitutional dopants in NWs
• Molecular deping and gas sensi
- Molecular doping and gas sensing
- Conclusions

ZN formalism: Dopants

• Consider the "chemical reaction" for

substitutional formation substitutional formation

$$
Si_n + X_{ref} \rightleftarrows Si_{n-1}X + W_{si} + Si_{bulk}
$$

$\rm \Delta E_{f}\!\! =\!\! E_{S}\!\!+\!\!\mu_{Si}\!\!-\!\! E_{clean}\!\!-\!\!\mu_{X}\!\! =\!\! E_{S}\!\!-\!\! E_{clean}$ $-\Sigma_{\rm i}$ n_iµ_i

n_i: Number of atoms *added* into the defect S. B. Zhang and John E. Northrup, *Phys. Rev. Lett*. **67**, 2339 (1991)

Charged cells in PBCs

- The spurious contribution due to the interaction of charge with its images must be subtracted.
- A periodic array of charges has a divergent Coulomb energy…

- ... but it can be embedded in a neutralizing jellium
to make the sum convergent to make the sum convergent.
- We want the L→∞ limit.

Charged cells in PBCs: Ewaldsum

• The spurious energy is given by

$$
\frac{E}{N} = \frac{1}{2} \sum_{i} \frac{q^2}{\varepsilon R_i} = \frac{1}{2} \alpha \frac{q^2}{\varepsilon L}
$$

 \bullet α is the Madelung constant

$$
\frac{\alpha}{L} = \sum_{i} \frac{erfc(\gamma R_i)}{R_i} + \sum_{i} \frac{4\pi}{V_c} \frac{\exp(-G_i^2/4\gamma^2)}{G_i^2} - \frac{2\gamma}{\sqrt{\pi}} - \frac{\pi}{V_c\gamma^2}
$$

Ef in NWs: ZN formalism is hard

 $3(Si_nH_m) \rightleftharpoons Si_{3n-1}H_{3m}+V_{Si}+Si_{NW}$

- In a vacancy/substitutional, you want to add the displaced atom to the NW, but…
- ... where does the displaced atom go?
- ... what's the energy of that atom?
- … what about surface passivation?

Ef in NWs: Consider many instances!

PC

UC -

- We consider the creation of as many defects as necessary to form a new primitive cell.
- Everything can be readily computed from first-principles.
- Reaction tells you how to deal with surface passivation.

$$
3(Si_nH_m) \rightleftharpoons Si_{3n-1}H_{3m}+V_{Si}+Si_{bulk}
$$

 $n[3(Si_nH_m)]+m/2 H_2 \rightleftarrows n[Si_{3n-1}H_{3m}+V_{Si}]+Si_nH_m$

Ef in NWs: Modified expression

• The formation energy corresponding to the reaction

 $n[3(Si_nH_m)]+m/2 H_2 \rightleftarrows n[Si_{3n-1}H_{3m}+V_{Si}]+Si_nH_m$

$$
\Delta E^{f} = E_{tot}^{D} - N E_{NW}^{PC} - \frac{n_{sc}^{Si}}{n_{Si}^{PC}} \left(E_{NW}^{PC} - \frac{n_{H}^{PC}}{2} E_{H_{2}} \right) + q \left(\varepsilon_{v} + \mu_{e} \right)
$$

Rurali and Cartoixà, *Nano Lett*. **⁹** (3), 975-979 (2009)

is

UC

Ef in NWs: Net charges

- The unit cell will no longer need to be cubic, but even if we choose it to be so…
- \bullet …^ε is now a *tensor*
- Need to start from the potential due to a point charge embedded in an anisotropic medium:

$$
V(r) = \frac{1}{\sqrt{\det(\mathcal{E})}} \frac{1}{\sqrt{r \cdot \mathcal{E}^{-1} \cdot r}}
$$

Ef in NWs: Ewald sum

 The general expression needed to compute the Madelung constant for the NWs is

$$
\frac{\alpha}{L} = \sum_{i} \frac{1}{\sqrt{\det(\mathcal{E})}} \frac{erfc(\gamma \sqrt{R_i \cdot \mathcal{E}^{-1} \cdot R_i})}{\sqrt{R_i \cdot \mathcal{E}^{-1} \cdot R_i}} + \sum_{i} \frac{4\pi}{V_c} \frac{\exp(-G_i \cdot \mathcal{E} \cdot G_i / 4\gamma^2)}{G_i \cdot \mathcal{E} \cdot G_i} - \frac{2\gamma}{\sqrt{\pi \det(\mathcal{E})}} - \frac{\pi}{V_c \gamma^2}
$$

Rurali and Cartoixà, *Nano Lett*. **⁹** (3), 975-979 (2009)

Al@SiNWs: Configurations

• We have studied substitutional and interstitial Al
atoms in $\varnothing = 1.0$ nm and 1.5 nm silicon NWs atoms in $Ø=1.0$ nm and 1.5 nm silicon NWs.

<110> <111>

Al@SiNWs: Configurations

- Substitutional AI is preferred, AI is a acceptor.
• Fer heavily n deped, AI dilution is eased
- For heavily n-doped, Al dilution is eased.

Rurali and Cartoixà, *Nano Lett*. **⁹** (3), 975-979 (2009)

Al@SiNWs: Convergence study

\bullet • Need a $50x50x60$ \AA ³ supercell for a <110>

Rurali, Palummo and Cartoixà, *Phys. Rev. B* **⁸¹**, 235304 (2010)

Summary

- Why nanowires?
- Substitutional dopants in NWs
• Molecular doping and gas sensi
- Molecular doping and gas sensing
- Conclusions

NH3 on SiNWs

\bullet • $NH₃@DB$ acts as a donor for SiNWs, surfaces

Miranda-Durán, Cartoixà *et al.*, *Nano Lett*. **10**, 3590 (2010)

Also see poster 89!!

NO2 on SiNWs

• $NO₂$ can reactivate a B-DB complex.

Experimental results in porous Si

- B stops etching
- Subsurface B are more frequent than inner B

Cullis and Canham, *Nature* **³⁵³**, 335 (1991)

Garrone *et al.*, *Adv. Mater.* **17** (5), 3590 (2005)

Conclusions

- Substitutional impurities traditionally used for
semiconductor doning have too high activation semiconductor doping have too high activation energies to be effective for ultrathin nanowires.
- Molecular adsorption can be a viable alternative tosubstitutional doping in thin NWs.
- The conductivity behavior of mesoporous Si under
The presence of NO, and NH, has been explained the presence of NO_2 and NH_3 has been explained.

Collaborators

- ICMAB:
	- Dr. Enric Canadell
- **ICMAB**
- **Instituto Politécnico Nacional (México)
• Prof Miguel Cruz-Irisson**
	- **•** Prof. Miguel Cruz-Irisson

- Università di Roma "Tor Vergata" Dr. Maurizia Palummo
- MICINN, TEC2009-06986

THANK YOU FOR YOUR ATTENTION

