

Application of plasma technologies to biological interface design

M. Perez Roldan, A. Ruiz, , G. Ceccone, P. Colpo, Fr. Rossi

Institute for Health and Consumer Protection Ispra http://www.jrc.cec.eu.int

Outline

- Background
- Plasma polymerization as surface functionalisation technique
- Surface Micro-Nano Patterning
- PeO like film as Cell culture platform
- Conclusions

Support to the European Policy on:

- Exposure monitoring
 - Air, water, food quality monitoring
 - Indoor exposure measurements
- Chemical policy (REACH)
 - Toxicity evaluation of 30000 chemicals compounds
 - Reduction of animal testing
 - Validation of alternative methods
- Nanotoxicology
 - In vitro tests
 - Nanoparticles proteins interactions
 - Nanoparticles cell interactions

In vitro tests Cell on chip

Protein surface interaction

(Bio)sensors

Cells and proteins on solid surfaces

monitoring, medical application...

JRC

EUROPEAN COMMISSION

Implants, tissues engineering Biology study, cell therapy Toxicology assays

Reliability and relevance of assays depend on bioactivity of biomolecules/cells i.e. Bio interfaces

1. Self Assembled Monolayers (SAM) Alkane thiols or alkyl silanes self-assemble on activated Au (111) or -OH surfaces. They are terminated with different functionalities (COOH, NH2, CFx, PEG) * easy and "cheap" * need of "spec substrate

2. Polymer Plasma Deposition (PE-CVD)

Capacitive coupled plasma reactor. By using different gas precursors in the discharge it is possible to deposit polymers with different functionalities (COOH, NH_2 , CF_x , PEG).

 chemical purity easy and "cheap" (for research) 	 * non-homogeneous coverage *Oxydation * need of "special" substrate
 control of the film properties by plasma parameters any substrate can be functionalized homogeneous coverage compatible with industrial production 	 no chemical purity need of special equipment

Production of films with controlled properties Characterisation/ Functional properties Plasma deposition Composition, Physico chemical properties Self Assembled Monolayers (silanes, thiols) (surface energy wettability charge)

*Di-EthyleneGlycoleDiMethylEther

CH₃O(CH₂CH₂O)₂CH₃ + Ar Diethylene glycol dimethyl ether DEGDME RF(13,56MHz) Glow discharge

PEO-like films

TNT 2011- Tenerife

Optimization of PEO-like deposition

Deposition parameters: Di-Ethylene Glycole DiMethylEther precursor, 20mTorr, 2W, 30 min

- High PEO-like character (C-O>70%) for P=2W
- High coating stability (water, ethanol, PBS...)
- 95% protein adhesion reduction for P<5watts</p>

Chemical characterization of PEO patterns after incubation in BSA solution by ToF-SIMS

Evaluation of the absorbed protein mass (QCM)

Surface	Functionality	Contact angle (degrees)	BSA Absorbed mass (@ pH=7.5) (45 μg/ml) (ng*cm ⁻²)	
PAA	СООН	38 ± 2	330	
PAL	NH ₂	45 ± 3	480	Bio- Adhesive
Teflon	CF _x	110 ± 2	290	
PEO	C – O	50 ± 3	<10	Anti- adhesive

General principle:

JRC

EUROPEAN COMMISSION

- ➤ Higher definition (≈10nm). Use PMMA as electron sensible resists
- > Electrons break modify polymer chain -> can be dissolve by adapted solvent.
- > metallic electrodes, nanostructure of PMMA or Si.

EBL & plasma polymerization: PEO-like/ppAA nanostructures

Micro and nano structures of pPAA on PEO-like matrix.

- No Baking of PMMA
- Removal of PMMA at the end of the process with MIBK/IP

-methyl isobutyl ketone (MIBK) and isopropyl alcohol (IPA), 1/3

F. Bretagnol, et al. Nanotechnol.18 (2007), 135303

EBL & plasma polymerization.

JRC

EUROPEAN COMMISSION

ToF-SIMS analysis after immersion in a BSA solution (a) C3H7O+ ions (59 amu) (b) sum of BSA amino acid fragments (C3H6N+, C3H7N+ , C3H8N+ C4H8N+).

Positively charged particles are mainly adsorbed on the pPAA

Protein nanostructure interactions

SURFACE PLASMON RESONANCE

HSA (20 µg/ml) Blocking with BSA Ab-HSA at different concentrations (1-50 µg/ml)

Fabrication step optimisation PEO on SPR prism EBL with different doses and energies

- Energy ____ Dose
- 10kV _____ 500-7000 μC/cm²
 - 5kV _____ 250-3500 µC/cm²
 - 2kV _____ 100-1400 µC/cm²

Film characterisation by Ellipsometry

Energy: 2KeV

Densification of the film after irradiation.

Micro spot = 200 x 200 μ m

TNT 2011- Tenerife

500 nm spots, pitch = 5 μ m

Without Proteins

+ BSA 20 μ g/ml

Protein interactions

SPR images

SPR image before and after IgG injection (20 $\mu g/ml)$

Microspots = 100 x 100 μ m²

Microspots = 100 x 100 μ m²

Tof-Sims analysis with Ubiquitin–N¹⁵

20 µg/ml

TNT 2011- Tenerife

Nanostructures: line 170 nm width picth = 500 nm

Background

Support to the implementation of EU policies

- Registration, Evaluation and Authorisation of CHemicals (REACH)(EC/1907/2006)
- 7th Amendment to the Cosmetics Directive (2003/15/EC)
- Pharmacological Testing and Toxicity Testing in drug development (ICH M3(R1))

⇒ Request for validated *in vitro* testing methods as alternatives to animal testing

TNT 2011- Tenerife

- Based on cell lines
 Effects of chemicals on human Health
- Primary cells : Reproducibility, availability
- stem cells : difficult to work with:
 - Maintenance as non differentiated
 - Control of differentiation
 - Different types of cells can be produced simultaneously
- → Interpretation of in vitro tests results??

OBJECTIVE OF THE WORK

- Control of stem cells developmental processes by surface chemistry: use of biomolecules microarrays.
 - Application to developmental neurotoxicity

Our approach

Dual properties of PEO like film:

- Anti adhesive properties in wet condition
- Adhesive in dry condition

Fluorescense microscopy after print and rinsing

β-TublII → neurons , GFAP → astrocytes / stem cell, Hoechst → nuclei. TNT 2011- Tenerife

EUROPEAN COMMISSION

% of cells per sqare

 Plasma polymerization allows the fabrication of complex layers with a whole range of controlled biological properties.

✓ Plasma polymerization is compatible with different patterning methods such as e-Beam allowing the creation of ordered micro and nano-patterned surfaces with complementary chemical properties.

✓ Direct printing of proteins patterns on PEO is possible :

- Control of cell physico/bio/chemical environment
- Control of cell cluster sizes, distances, interactions
- Control of stem cells maintenance and commitment

Special thanks to Jakub Nowak, Dora Mehn, Marzena Zichowicz, Ana Ruiz & Lena Buzanska

JRC Action. NanoBioTech – NanoBiotechnologies for Health Applications (JRC-15024)

