

CSIC

Antonio García-Martín

Instituto de Microelectrónica de Madrid

J. Galisteo-López, M. López-García, A. Blanco, C. López

Instituto de Ciencia de Materiales de Madrid

Consejo Superior de Investigaciones Científicas

Hybrid photonic-plasmonic crystals based on self-assembled structures

http://www.imm-cnm.csic.es/magnetoplasmonics

http://luxrerum.org

Manipulation of light

The quest for the control of light propagation (3D) PHOTONIC CRYSTALS E. Yablonovitch PRL (1987)

Periodic structures λ ~period

S.Y. Lin et al, Nature (1998)

Inexpensive technique self assembly

J. Galisteo-López et al, Adv. Mater. (2011)

Also for random systems

A. Blanco et al, Nature (2000)

M. Reufer et al, APL (2007) P.D. Garcia et al, Adv. Mater. (2007)

Manipulation of light

In two dimensions (2D)

Microlens arrays

W.Y. Fu et al, APL (2009)

Coupled resonator WGs

2D Photonic Crystals

periodicity based on natural tendency cost effective approach large areas

Y. Kurokawa et. al, PRB (2004)

3D light confinement in 2D slab PhC Applications demanding strong light-matter interaction

In-plane: Bragg diffraction Vertical: total internal reflection Ideal scenario: **free-standing**

IMN

CSIC

Plasmonics?

Plasmons: electromagnetic modes at metal-dielectric interfaces

Main characteristics

Localization of the EM field in subwavelength volumes

What if we combine this with self-assembly?

Spheres over a substrate (metallic)

Pro: would be easy to grow and manipulate Leakage?: Reduced !!! Good quality factor $Q = \frac{\omega}{1}$

CSIC

Metallodielectric systems

Spheres over a substrate (metallic)

Varying sphere diameter Q_{WG} : governed by n $Q = \frac{\omega}{\Delta \omega}$ Q_{SPP} : governed by k

Can we actually do it?

J. Galisteo-Lopez et. al, APL (2011)

Fabrication

Organic (polystyrene) spheres: doped with Rh6G Metallic substrates: gold, silver Dielectric substrates: silicon, glass

J. Galisteo-Lopez et. al, Adv. Mater. (2011)

Optical response: Reflection at normal incidence

Magnetale Namosanilealines

Magneto Plasmonics

IMM

CSIC

MINEM

Silver

Good agreement with theory, but reduced Q due to structural imperfections

CSIC

IMM

Metallodielectric systems

Dispersion relation

Gold

Good agreement with theory, but reduced Q due to structural imperfections

Emission at normal direction

overall enhancement of spontaneous emission 20x enhancement at WG-modes

CSIC

Metallodielectric systems

Angle and polarization resolved emission

Emission channeled by certain modes Enhancement is directional and polarized

CSIC

Metallodielectric systems

Angle and polarization resolved emission

Emission channeled by certain modes Enhancement is directional and polarized

Tunability

Wavelength depends on sphere radius

M. Lopez-Garcia et. al, Adv. Fun. Mater. (2010)

Tunability

IMM

CSIC

Wavelength choosing by sphere ratio

M. Lopez-Garcia et. al, Adv. Fun. Mater. (2010)

Summary

Hybrid self-assembled metallodielectric systems

Cost effective approach Strongly modified field intensity distribution Enhanced light matter interaction Wavelength choosing by sphere ratio

Applications

Grandidier et al, Adv. Mater. (2011)

IMM

CSIC