

University of Castilla-La Mancha Chemical Engineering Department Ciudad-Real (Spain)



## CATALYTIC OXIDATION OF CRUDE GLYCEROL USING Au CATALYST BASED ON CARBONACEOUS SUPPORTS

<u>Sonia Gil</u>, Miriam Marchena, Carmen María Fernández, Amaya Romero and José Luis Valverde





Tenerife, 21-25 November 2011





Liquid phase selective oxidation of commercial glycerol and crude glycerol to glyceric acid

### GRAPHITE (G)

- Very high stuctural order
- $(d_{002}=0,338 \text{ nm}, T_{TGA}=1077 \text{ K})$
- Limited porosity

(Área superficial BET ~ 10 (m<sup>2</sup> g<sup>-1</sup>))



Conglomeration of spherical bodies

•Medium structural order ( $d_{002}$ = 0,346 nm,  $T_{TGA}$  = 952 K)

• Low surface areas (Área superficial BET ~ 3.4 (m<sup>2</sup> g<sup>-1</sup>))





### **RIBBON CARBON NANOFIBERS (CNF-R)**

• Medium structural order  $(d_{002}=0,342 \text{ nm}, T_{TGA}=800 \text{ K})$ 

• Mesoporous materials (Área superficial BET ~ 109  $(m^2 g^{-1})$ )

• Discontinuity of the planes of graphite



## **IMPORTANCE OF GLYCEROL**



#### **Biodiesel production :**

 $\mathbb{R}_2$ 



100 kg of GLYCEROL, as a by-product, is produced per 1 tonne of biodiesel (10 wt% of the total product)

Main reactions of glycerol:



## **IMPORTANCE OF GLYCEROL**



#### **Biodiesel production :**



#### Transesterification

process



#### •Mixture of methanol,

- Water,
- Inorganic salts (catalyst residue),
- Free fatty acids,
- Unreacted mono-, di- and triglycerides,
- Methyl esters,
- A variety of other organic materials



Crude glycerol, with an estimated 50% purity

**REVALORIZATION** of crude glycerol to obtain products of high value.



Selective oxidation of commercial glycerol and crude glycerol

#### **\*THPC** (Tetrakis-(hydroxymethyl)-phosphonium chloride)

| Support                               | BET<br>surface<br>area<br>(m <sup>2</sup> g <sup>-1</sup> ) | Total<br>pore<br>volume<br>(cm <sup>3</sup> g <sup>-1</sup> ) | Mean pore<br>diameter<br>(nm) | TGA<br>temperature<br>range (K) |
|---------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------|-------------------------------|---------------------------------|
| G                                     | 10                                                          | 0.04                                                          | 3.3                           | 832-1078<br>(1077)              |
| CNF-R                                 | 109                                                         | 0.25                                                          | 24.7                          | 750-827<br>(800)                |
| CNS                                   | 3.4                                                         | 0.014                                                         | 3.7                           | 826-983<br>(952)                |
|                                       |                                                             |                                                               |                               |                                 |
| Low surface area and Limited porosity |                                                             |                                                               |                               | d porosity                      |

| Support                     | BET<br>surface<br>area<br>(m <sup>2</sup> g <sup>-1</sup> ) | Total<br>pore<br>volume<br>(cm <sup>3</sup> g <sup>-1</sup> ) | Mean pore<br>diameter<br>(nm) | TGA<br>temperature<br>range (K) |
|-----------------------------|-------------------------------------------------------------|---------------------------------------------------------------|-------------------------------|---------------------------------|
| G                           | 10                                                          | 0.04                                                          | 3.3                           | 832-1078<br>(1077)              |
| CNF-R                       | 109                                                         | 0.25                                                          | 24.7                          | 750-827<br>(800)                |
| CNS                         | 3.4                                                         | 0.014                                                         | 3.7                           | 826-983<br>(952)                |
|                             |                                                             |                                                               |                               |                                 |
| <b>Mesoporous materials</b> |                                                             |                                                               |                               |                                 |

| Support | BET<br>surface<br>area<br>(m <sup>2</sup> g <sup>-1</sup> ) | Total<br>pore<br>volume<br>(cm <sup>3</sup> g <sup>-1</sup> ) | Mean pore<br>diameter<br>(nm) | TGA<br>temperature<br>range (K) |
|---------|-------------------------------------------------------------|---------------------------------------------------------------|-------------------------------|---------------------------------|
| G       | 10                                                          | 0.04                                                          | 3.3                           | 832-1078<br>(1077)              |
| CNF-R   | 109                                                         | 0.25                                                          | 24.7                          | 750-827<br>(800)                |
| CNS     | 3.4                                                         | 0.014                                                         | 3.7                           | 826-983<br>(952)                |
|         |                                                             |                                                               |                               |                                 |
|         | Low surface areas and Negligible porosity                   |                                                               |                               | ole porosity                    |

| Support | BET<br>surface<br>area<br>(m <sup>2</sup> g <sup>-1</sup> ) | Total<br>pore<br>volume<br>(cm <sup>3</sup> g <sup>-1</sup> ) | Mean pore<br>diameter<br>(nm) | TGA<br>temperature<br>range (K) |
|---------|-------------------------------------------------------------|---------------------------------------------------------------|-------------------------------|---------------------------------|
| G       | 10                                                          | 0.04                                                          | 3.3                           | 832-1078                        |
| CNF-R   | 109                                                         | 0.25                                                          | 24.7                          | 750-827                         |
| CNS     | 3.4                                                         | 0.014                                                         | 0.18                          | 826-983                         |
|         |                                                             | <b>^</b>                                                      |                               |                                 |

**T**<sub>Gasification</sub> + structured a carbon material

G > CNS > CNF-R

## **Results and discussion. CATALYST CHARACTERIZATION**



## **Results and discussion. CATALYST CHARACTERIZATION**



#### **Table 2.** Physicochemical properties of the Au catalysts.

|                                                           | Au/G-SGT | Au/CNF-R-SGT | Au/CNS-SGT |
|-----------------------------------------------------------|----------|--------------|------------|
| Au loading (% w/w)                                        | 0.6      | 0.6          | 0.4        |
| TPR T <sub>máx</sub> (K)                                  | -        | 656          | 658        |
| $d_s$ (nm)                                                | 7.7      | 13.2         | 4.2        |
| <b>BET surface area</b> (m <sup>2</sup> g <sup>-1</sup> ) | 9.83     | 104          | 2.54       |
| <b>Total pore volume (cm<sup>3</sup>g<sup>-1</sup>)</b>   | 0.019    | 0.029        | 0.011      |
| Micropore Volume (cm <sup>3</sup> g <sup>-1</sup> )       | 0        | 0            | Û          |
| Micropore area (m <sup>2</sup> /g)                        | 0        | 0.51         | 0          |
| Mesopore area (m <sup>2</sup> /g)                         | 9.83     | 103.5        | 2.54       |
| Mean pore diameter (nm)                                   | 2.8      | 23.9         | 8.4        |

Partial blockage of the porous structure of materials upon deposition of the metal phase.



CATALYTIC TEST. SELECTIVE OXIDATION OF GLYCEROL





| Au/G                 |                      |  |
|----------------------|----------------------|--|
| d <sub>002</sub> (Å) | T <sub>TGA</sub> (K) |  |
| 3.378                | 1077                 |  |

| Au/CNF-R             |                      |  |  |
|----------------------|----------------------|--|--|
| d <sub>002</sub> (Å) | T <sub>TGA</sub> (K) |  |  |
| 3.423                | 800                  |  |  |





#### Small, thin, faceted and well dispersed Au particles

## **INFLUENCE OF THE NATURE OF THE SUPPORT**



HIGHER CRYSTALLINITY (lower presence of structural defects)

Greater number of graphite edges exposed in an orderly manner

Resulting in a STRONG anchoring of small metal particles (STRONG INTERATION METAL-SUPPORT)





Small, thin, faceted and well dispersed Au particles



**Conversion and Glyceric acid selectivity (%)** 



## **INFLUENCE OF THE NATURE OF THE SUPPORT**



X<sub>COMERCIAL GLYCEROL</sub>

## **INFLUENCE OF THE NATURE OF THE SUPPORT**





The graphite sheets are not closed shells but rather waving flakes that follow the curvature of the sphere, creating many open edges at the surface that give the structure a high chemical reactivity.

It wich causes the Au particles to disperse better than in graphite.





## **COMMERCIAL GLYCEROL AND/OR CRUDE GLYCEROL**



## **COMMERCIAL GLYCEROL AND/OR CRUDE GLYCEROL**



# 1. Purification by decantation and evaporation using vacuum flash process.





## **REMOVE:**

Free fatty acids and Methyl esters. **REMOVE:** 

## Methanol.

# 1. Purification by decantation and evaporation using vacuum flash process.

**Table 4.** Impurities present in the crude glycerol and evaporation glycerol.

| IMPURITIES                     | <b>CRUDE GLYCEROL</b> | <b>EVAPORATION</b> |
|--------------------------------|-----------------------|--------------------|
|                                | (% wt.)               | GLYCEROL           |
|                                |                       | (% wt.)            |
| Catalyst (CII, ONa)            | 0.056                 | 0.056              |
| (Methanol (CH <sub>3</sub> OH) | 0.131                 | 0                  |
| Phospholipids                  | 0                     | 0                  |
| Methyl esters                  | 0.029                 | 0.029              |
| K                              | 0.00021               | 0.00018            |
| Na                             | 3.23                  | 2.4                |
| Cl                             | 1.1                   | 1.1                |
| Fatty acids or                 | 0.0001                | 0                  |
| triglycerides                  |                       |                    |
| Water                          | 0.001                 | 0                  |
| Minimum purity                 | 95.5                  | 96.4               |

## 2. Purification by neutralization with hydrochloric acid.



## **REMOVE:**

Catalyst and soap.

| IMPURITIES                     | CRUDE    | GLYCEROL    |
|--------------------------------|----------|-------------|
|                                | GLYCEROL | NEUTRALIZED |
|                                | (% w/w)  | (% w/w)     |
| Catalyst (CH <sub>3</sub> ONa) | 0.056    | 0           |
| Methanol                       | 0.131    | 0           |
| (CH <sub>2</sub> OH)           |          |             |
| Phospholipids                  |          | 0           |
| <b>Methyl esters</b>           | 0.029    | 0.029       |
| K                              | 0.00021  | 0           |
| Na                             | 3.23     | 0.7         |
| Cl                             | 1.1      | 2.2         |
| Fatty acids or                 | 0.0001   | 0           |
| triglycerides                  |          |             |
| Minimum purity                 | 95.5     | 97.1        |

**Table 5.** Impurities present in the crude glycerol and glycerol neutralized.

### **INFLUENCE OF THE PURIFICATION TREATMENT OF GLYCEROL CRUDE**



Reaction conditions: 0.3 M glycerol solution, glycerol/Au=3500 mol/mol,

 $P_{O2}$ =5 bar, 333 K, 1000 rpm and NaOH/glycerol = 2 mol/mol.

## **INFLUENCE OF THE PURIFICATION TREATMENT OF GLYCEROL CRUDE**



Reaction conditions: 0.3 M glycerol solution, glycerol/Au=3500 mol/mol,

### **INFLUENCE OF THE PURIFICATION TREATMENT OF GLYCEROL CRUDE**



This could be an interesting low cost alternative to revalorization of crude glycerol to obtain product of high added value.

Reaction conditions: 0.3 M glycerol solution, glycerol/Au=3500 mol/mol,

 $P_{O2}$ =5 bar, 333 K, 1000 rpm and NaOH/glycerol = 2 mol/mol.

## CONCLUSIONS



- The results of this study show that the product distribution for the liquid phase oxidation of glycerol is clearly dependent on the nature support and Au particles size.
- Thus, the highest catalyst activity was achieved when high crystalline supports (low amount of structural defects) and lower Au particle size (high dispersion).
- Therefore, the catalyst of Au/G resulted in a higher catalytic activity than the catalyst supported on CNF-R.
- However, the catalyst supported on CNS, although it is less crystalline than graphite, resulted in a slight increased of the catalytic activity. This can be attributed to the greater dispersion of Au particles because the graphene sheets are curved and fail to close, leaving many open edges that give the structure a high chemical reactivity.
- •On the other hand, it was observed that, in all cases, catalytic activity using commercial glycerol was superior respect to the crude glycerol, which may be due to destabilization of the catalyst by impurities in the crude glycerol.
- Nevertheless, after purification of the crude glycerol by neutralization, the catalytic activity was similar to that obtained using the commercial one, suggesting that this could be an interesting low cost alternative to revalorization of crude glycerol to obtain products of high added value.



University of Castilla-La Mancha Chemical Engineering Department Ciudad-Real (Spain)



## CATALYTIC OXIDATION OF CRUDE GLYCEROL USING Au CATALYST BASED ON CARBONACEOUS SUPPORTS

<u>Sonia Gil</u>, Miriam Marchena, Carmen María Fernández, Amaya Romero and José Luis Valverde





Tenerife, 21-25 November 2011