Adsorption, cyclodehydrogenation and graphene formation from molecular precursors on catalytic surfaces

J.A. Martin-Gago, gago@icmm.csic.es

Structure of Nanometric Systems Group

http://www.icmm.csic.es/esisna/

On-surface chemistry: Influence of the substrate in de-hydrogenation reactions of PAH (polycyclic aromatic hydrocarbons)

On surface chemistry of cyclic molecules

C60H30- on Pt(111) -> fullerenes

C60H30- on Au(111) -> 2D layers

C60H30- on TiO2(110)-> 2D layers, fulleren-like

Graphene on Pt(111) -> multiphase graphene

Surface science techniques: STM, XPS, synchrotron radiation, DFT...

СММ

J.A. Martin-Gago, gago@icmm.csic.es

Structure of Nanometric Systems Group

http://www.icmm.csic.es/esisna/

Flexible electronics based on organic molecules:

Near-future nanotechnology . Light, cheap, ecological

1947: *micro-science*

First transistor: by Bardeen, Brattain and Shockley

First electronic circuit

Micro-science

Micro-technology

nano-science

nano-technology

We are doing the science before using molecules for organic devices

Single-molecule electronics: new molecules on-surfaces

Structure and electronic properties of molecular layers

PTCDA /Au(111)

SAMS : very nicely ordered, but...

Subjected to time variability and high degradation of the structural properties, already at room temperature

On-surface synthesis

To form directly on the surfaces species that you could not have otherwise

J. Mendez, M.F. López, J.A. Martin-Gago, Chem. Soc. Rev. 40, 4578-4590 (2011)

J. Mendez, M.F. López, J.A. Martin-Gago, Chem. Soc. Rev. 40, 4578-4590 (2011)

On-surface synthesis: several advantages

Formation of new species not available by conventional techniques

Stable structures with efficient electron transfer

UHV- compatible: surface science techniques for a controlled growth and characterization, mainly STM

J.A. Martín-Gago, Nat. Chem. (2011), 3, 11-NEWS AND VIEWS

Molecular precursor	Substrate	Activation Temp. (K)	Structure or molecule formed	Mechanism Reaction
2000 Diiodobenzene	Cu(111)	STM pulse	Biphenyl molecules	Dehalogenation
2007 _{HBC}	Ru(0001)	770K	Molecular domes	Cyclodehydrogenatio n
2007 Amine + aldehyde	Au(111)	300K	Imine	Dehydratation: $R-NH_2 + O=R' - R-N=R + H_2O$
2008 C ₅₇ N ₃ H ₃₀	Pt(111)	700K	Azafullerene $C_{57}N_3$	Cyclodehydrogenatio n
2007 Br-Porphyrins	Au(111)	590K	Dots, chains and networks	Dehalogenation
2008 TAPP	Cu(111)	520K	Polymeric chains	Tautomerization of pyridine
2008 Porphyrins	Cu(110)	470K	Network	Dehydrogenation R-CH ₃ +CH ₃ -R -> R-CH ₂ -CH ₂ -R
2008 [BDBA]n [BDBA-HHTP]n	Ag(111)	470K	Organic framework	Dehydration: -B(-OH) ₂ ->SOF +H ₂ O
2009 DBTF	Au(111)	520K	Chains	Dehalogenation
2009 Diiodobenzene	Cu(110)	500K	Polymeric lines	Dehalogenation
2009 ТВВ	Cu(111) Ag(110)	570K	Network	Dehalogenation
2010 DiBr-bianthryl	Au(111)	470K 670K	Graphenenanorib bons	Dehalogenation + dehydrogenation
2011 Polyphenile	Cu(111)	500K	Nanographene	Cyclodehydrogenatio n

The balance surface-molecule molecule-molecule interaction rules the chemistry

Adsorption energies

Borrowing ideas from heterogeneous catalysis

J. Mendez, M.F. López, J.A. Martin-Gago, Chem. Soc. Rev. 40, 4578-4590 (2011)

On surface synthesis

To form directly on the surfaces species that you could not have otherwise

C₆₀H₃₀ and C₅₇N₃H₃₃: two kind of Polycyclic aromatic hydrocarbons (PAH)

THE PRECURSORS: $C_{57}N_3H_{30}$ AND $C_{60}H_{30}$

If topologicaly possible... a PAH could become a fullerene?

First proposed by Scott, L.T., *et al.* :

A rational chemical synthesis of C_{60} . Science **295**, 1500-1503 (2002).

Proposed from C₆₀H₃₀ to form fullerene Using high-power laser, Mass analysis detection Extremely low efficiency (1%), 11 steps

Question is: do you re-make all bonds what this huge energy supply?

ORIGAMI AT THE NANOSCALE

• Surface Catalysised process

PROGRESS ARTICLE

The rise of graphene

A. K. GEIM AND K. S. NOVOSELOV Manchester Centre for Mesoscience and Nanotechnology, University of Manchester, Oxford Road, Manchester M13 9PL, UK

Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance

1935: Landau and Peierls argued that strictly 2D crystals were thermodynamically unstable and could not exis-> large thermal fluctuations-> folding mechanism

nature materials | VOL 6 | MARCH 2007 | www.nature.com/naturematerials

In-vacuum evaporation of PAH

Clean Pt(111) at RT

Constant current image I = 0.2 nA V = 1000 mV

(50 x 50) nm²

Randomly adsorbed C60H30 molecules

More stable adsorption position

Dr. Rubén Pérez Giulio Biddau (UAM)

 $C_{60}H_{30}$ is flatten upon adsorption

Adsorption may be described in terms of the constitutient benzene subunits.

ENANTIOMERIC SURFACE SEPARATION

Preferential adsorption site

No surface molecular diffusion: strong surface-molecule bonding just reorientation

G. Otero, G. Bidau,R. Perez and J.A. Martin-Gago Chem. Europ. J. 16,13920, (2010)

Cyclodehydrogenation

Low corrugation of C60: compatible with results of C60/Pd(110), Pt(111), Pt(110)

Strong interaction with the surface: Pt removal. Felici et al. Nature materials 4, 688 (2005)

Sinthetized C_{60} / Pt(111) from dehydrogenation of $C_{60}H_{30}$ Commercial C_{60} / Pt(111) (40.0nm x 40.0nm)

100% efficiency!!!

C₅₇N₃ synthesized for the first time

Cyclodehydrogenation

High efficiency

TPD

 $C_{57}H_{27}D_6N_3$

Without molecules

Fullerenes from aromatic precursors by surface catalysed cyclodehydrogenation

Nature 454, 865 (2008)

G. Otero, C. Sánchez-Sánchez, L. Alvarez, R. Caillard, C. Rogero, M. F. López, F. J. Palomares, J. Méndez, José A. Martín-Gago (ICMM-CSIC, CAB)

G. Biddau, M. A. Basanta, J. Ortega, R. Pérez (UAM)

N. Cabello, A. M. Echavarren, B. Gómez-Lor (ICIQ, ICMM)

> Structure of Nanometric Systems Group

http://www.icmm.csic.es/esisna/

Substrate Influence

Au(111) at RT

Molecules diffuse on the surface at RT Very low molecule-substrate interaction

C57H33N3/Au(111) after <u>330°C</u>

C57H33N3/Au(111) after 200°C

(50.0nm x 50.0nm) I=0.05nA, V=1000mV

C57H33N3/Au(111) after 330°C

C57H33N3_Au111_110810_2003.f.top (50.0nm x 50.0nm) I=0.1nA, V=1000mV

C57H33N3/Au(111) a 270°C – Low coverage

Clustered at step and reconstruction edges.

Weakly bound

(100.0nm x 100.0nm) I=0.2nA, V=-1500mV

C57H33N3/Au(111) a 270°C – Low coverage

C57H33N3_Au111_110809_1034.f.top (7.0nm x 7.0nm) I=0.35nA, V=-930mV

C57H33N3/Au(111) a 270°C – Low coverage

C57H33N3_Au111_110809_1072.f.top (27.9nm x 16.7nm) I=0.23nA, V=-1500mV

C57H33N3/Au(111) at **270°C – High coverage**

Carbonaceous layer N-doped

On a reactive surface, efficient in dehydrogenation

On a weakly interacting surface

Substrate Influence

Au(111) 650 °C

Some rounded structures looking like fullerenes

Very low efficiency < 1%

Resultados

Cyclodehydrogenation

		Temperature	efficiency
	From vapor	> 1200 °C	0.1 – 1 %
	Au(111)	650 °C	< 1 %
	Cu(111)	550 °C	< 1 %
7	Pt(111)	450 °C	~ 100 %

Pt is efficient in dehydrogenating the surface

What beyond cyclodehydrogenation?

 $C_{57}H_{27}D_6N_3$

Without molecules

Graphene

LARGE PAH AS PRECURSORS: MULTI DOMAIN G/Pt(111)

Otero et al., Nature, 454 (2008)

700 K

C₆₀ + G

30x30 nm²; 1 nA; 2 V

Otero et al., Phys. Rev. Lett, 105 (2010)

LARGE MOLECULES AS PRECURSORS: MULTI DOMAIN G/Pt(111)

Multiphase and Low than 1 ML coverage: Graphene Laboratory we can observe and compare

50x50 nm²; 1 nA; 0.2

90x35 nm²; 0.2 nA; 0.4 V

MULTI DOMAIN G/Pt(111)

Use of low temperatures and large PAH

4x4 nm²; 2-4 nA; 0.01-0.1 V

How many moiré superstructures can be accommodated on a single-crystal metal surface?

90x35 nm²; 0.2 nA; 0.4 V

As much as minimize the strain

$$|\Delta_{i,j}^{n,m}| = |\vec{\mathsf{a}}_{\mathsf{Pt}_{n,m}} - \vec{\mathsf{a}}_{\mathsf{gr}_{i,j}}(\Phi)|$$

22 Moiré Superstructures for Pt(111)

Only 19 Moirés are discernable.

MODEL ON OTHER TRANSITION METALS

Merino et al., ACS Nano 5 (2011)

G/Pd(111) The model predicts 14 superstructures; 5/6 reported reconstructions are predicted by the model

<u>G/Ir(111)</u> The model predicts **18** superstructures; **4/4 reported**

reconstructions are predicted by the model

<u>G/Ni(111)</u> The model predicts 22 superstructures; 3/3 reported reconstructions are

predicted by the model

Are other surfaces than transition metals good for dehydrogenation reactions?

ICMM The (1x1) surface observed by STM

Accepted appearance of the (1x1) surface

80 Å x 67 Å l = 0.17 nA, V = 1.5 V

C. Sánchez-Sánchez et al. Nanotechnology 2010, 21, 405702

TIO2 WITH RT_STM... A Difficult substrate....

C. Sánchez-Sánchez et al. Nanotechnology 2010, 21, 405702

15.0nm x 15.0nm I=0.15nA V=1.8V

10.0nm x 10.0nm I=0.2nA V=1.45V

8.0nm x 8.0nm

I=0.15nA

15.0nm x 15.0nm I=0.15nA

Free Molecule total DOS calculations

C₆₀H₃₀/(1x1) surface T=650-750 K

30.0nm x 30.0nm I=0.11nA V=1.9V

FORMATION OF FULLERENE-LIKE STRUCTURES

50.0nm x 50.0nm I=0.11nA V=1.9V

11.0nm x 11.0nm I=0.11nA V=1.9V

NEXAFS indicate a dehydrogenation reaction

CONCLUSIONS

*On-surface chemistry is new field for surface science and nanotechnology that could lead to new kind of polymeric networks or molecular objects

*The interaction of PAH with the single-crystal is critical for defining the final product of the reaction.

Fullerenes or polymers, extended graphene or multidomain can be obtained from the same molecular precursor

EVEN IN WEAKLY BOUND SYSTEMS.

Thank You!

- Dr. C.F.J. Flipse and K. Van de Ruit from TUE
- Dr. S. Gardonio and Dr. S. Lizzit from Syncrotone Trieste
- Dr. M. Blanco-Rey from University of Cambridge

Ruben Pérez G. Bidau SPM-TH group UAM

αG/Pt(111)DFT: vacancy model

STM Simulations:

G. Otero *et al.* PRL, 2010, 105, 216102.

