

Higher-order resonances in single-arm nanoantennas: Evidence of Fano-like interference FANO PLASMONICS MADE SIMPLE

F. López-Tejeira, R. Paniagua-Domínguez, R. Rodríguez-Oliveros José A. Sánchez-Gil,

> Instituto de Estructura de la Materia (CSIC), Madrid (Spain) Email: j.sanchez@csic.es

Motivation: Fano in Plasmonics

Fano-like plasmon resonances on a variety of complex nanostructures

Luk'yanchuk, Zheludev, Maier, Halas, Nordlander, Giessen, Chong, Nat. Mater. 2010

- Introduction: Plasmon Fano reso/single-NP
- Nano-Spheroid
 - Quasi-analytical approach: Mode interference
- Nano-rods & nano-wires
 - Numerical calcs
 - 1st-3rd mode: Spatial interference
- Conclusions:
 Spectral & spatial overlap

- Introduction: Plasmon Fano reso/single-NP Why not?
- Nano-Spheroids
 - Quasi-analytical approach: Mode interference
- Nano-rods & nano-wires
 - Numerical calcs
 - 1st-3rd mode: Spatial interference
- Conclusions:
 Spectral & spatial overlap

A Fano resonance exhibits a distinctly asymmetric shape with the following functional form:

$$rac{(F\gamma+\omega-\omega_0)^2}{(\omega-\omega_0)^2+\gamma^2}$$

where ω_0 and γ are standard parameters that denote the position and width of the resonance, respectively; **F** is the so-called Fano parameter, which describes the degree of asymmetry. The microscopic origin of the Fano resonance arises from the constructive and destructive interference of a narrow discrete resonance with a broad spectral line or continuum.

Fano, "Effects of configuration interaction on intensities and phase shifts", Phys. Rev. 1961.

CLASSICAL

Joe, Satanin, and Kim, "Classical analogy of Fano resonances," Phys. Scr. 2006.

Miroshnichenko, Flach, Kivshar, Rev. Mod. Phys. 2010

Introduction: Fano resonances

Plasmon-Fano model

Giannini, Francescato, Amrania, Phillips, Maier, Nano Lett. 2011

Introduction: Fano resonances

BROAD mode (Lowest-order, E-Dipole) DARK mode (Higher-order, EM Multipole)

$$Q_{sca} = \frac{2}{q^2} \sum_{n} (2n+1) \left[|a_n|^2 + |b_n|^2 \right]$$

 O_{sca} Mie \rightarrow NO INTERFERENCE!!

Luk'yanchuk, Zheludev, Maier, Halas, Nordlander, Giessen, Chong, Nat. Mater. 2010

- Introduction: Plasmon Fano reso/single-NP
- Nano-Spheroids
 - Quasi-analytical approach: Mode interference
- Nano-rods & nano-wires
 - Numerical calcs
 - 1st-3rd mode: Spatial interference
- Conclusions:
 Spectral & spatial overlap

Fano LSPR/Nanospheroid

Longitudinal plasmon resonances Separation of variables (SVM)

Normal incidence: odd-symmetry modes

Modified Fano line shape

$$Q_{sca}(\omega) \propto \left| A(\omega) + B \left[\frac{b_1}{(\omega - \omega_1) + ib_1} + \frac{Fb_3}{(\omega - \omega_3) + ib_3} \right] \right|^2$$

López-Tejeira, Rodriguez-Oliveros, Paniagua-Domínguez, Sánchez-Gil, preprint

TNT 2011, Tenerife (Spain)

SVM

Longitudinal plasmon resonances

Oblique incidence: all modes n=1,2,3,...

Fano resonances/Nanospheroid

Longitudinal plasmon resonances

Oblique incidence: all modes n=1,2,3,...

Separation of variables (SVM)~Extended Mie

$$2_{sca} = \frac{4}{LD k_d^2} \left\{ 2\sum_{l=1}^{\infty} |b_l^{(1)}|^2 N_{1l}^2(c_d) + \operatorname{Re} \sum_{l=1}^{\infty} \sum_{m=l}^{\infty} \sum_{n=m}^{\infty} \sum_{n=m}^{\infty} i^{n-l} \left[k_d^2 a_{ml}^{(d)} \left(a_{mn}^{(d)} \right)^* \boldsymbol{\omega}_{ln}^{(m)}(c_d, c_d) + ik_d \left(b_{ml}^{(d)} \left(a_{mn}^{(d)} \right)^* \boldsymbol{\kappa}_{ln}^{(m)}(c_d, c_d) - a_{ml}^{(d)} \left(b_{mn}^{(d)} \right)^* \boldsymbol{\kappa}_{nl}^{(m)}(c_d, c_d) \right) + b_{ml}^{(d)} \left(b_{mn}^{(d)} \right)^* \boldsymbol{\tau}_{ln}^{(m)}(c_d, c_d) \left] N_{ml}(c_d) N_{mn}(c_d) \right\}$$

Mie

Mie-like: NO INTERFERENCE

Ext-Mie: INTERFERENCE

López-Tejeira, Rodriguez-Oliveros, Paniagua-Domínguez, Sánchez-Gil, preprint

TNT 2011, Tenerife (Spain)

Plasmon Fano reso/single-Nano-Spheroids

- Quasi-analytical approach: Mode interference
- Odd modes: 1st-3rd interference
- Even-odd modes: 1st-2nd NO interference
- Explore other single NP geometries

- Introduction: Plasmon Fano reso/single-NP
- Nano-Spheroids
 - Quasi-analytical approach: Mode interference
- Nano-rods & nano-wires
 - Numerical calcs
 - 1st-3rd mode: Spatial interference
- Conclusions:
 Spectral & spatial overlap

Fano resonances/Nanorod

López-Tejeira, Rodriguez-Oliveros, Paniagua-Domínguez, Sánchez-Gil, preprint

TNT 2011, Tenerife (Spain)

Fano-like LSPR/Nanowire

López-Tejeira, Rodriguez-Oliveros, Paniagua-Domínguez, Sánchez-Gil, arxiv

Fano resonance/Nanowire

Spatial Mode Interference

López-Tejeira, Rodriguez-Oliveros, Paniagua-Domínguez, Sánchez-Gil, preprint

- Introduction: Plasmon Fano reso/single-NP
- Nano-Spheroids
 - Quasi-analytical approach: Mode interference
- Nano-rods & nano-wires
 - Numerical calcs
 - 1st-3rd mode: Spatial interference
- Conclusions:
 Spectral & spatial
 - Spectral & spatial overlap

Fano-like LSPR on a single nanorod

Spectral & Spatial overlap

Explore new physics & configurations

► Applications: Fano made simple!!

Coworkers

Instituto de Estructura de la Materia (CSIC), Madrid (Spain)

Rogelio Rodríguez-Oliveros

Ramón Paniagua-Domínguez

IEM

CSIC

Fernando López-Tejeira

Acknowledgements

Funding agencies

... Thank you