

Effect of magnetoelastic anisotropy on domain wall dynamics in amorphous microwires

V. Zhukova¹, J.M. Blanco², V. Rodionova^{1,3}, M. Ipatov¹ and A. Zhukov^{1,4}

¹Dpto. Fisica de Materiales, Fac. Quimicas, UPV/EHU, 20009 San Sebastian, Spain ²Dpto. de Física Aplicada, EUPDS, UPV/EHU, 200018, San Sebastian, Spain ³Moscow State University, Phys. Fac., Moscow ⁴IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain

Outline

1. INTRODUCTION 1.1. STATE OF THE ART 2.EXPERIMENTAL TECHNIQUE : -FABRICATION PROCESS -MEASUREMENTS METHODS 3.EXPERIMENTAL RESULTS 4. Domain Wall Propagation (DWP) 4.1. Viscous region 4.2. Effect of magnetoelastic anisotropy 4.3. Non-linearity and defects 5. DISCUSSION 6. CONCLUSIONS

Motivation: Proposed magnetic memory and logic based on DWP

Possible MRAM and logic applications Stuart S. P. Parkin, *et al. Science* **320**, 190 (2008);

2µm

Fabrication of Glass coated microwires

• Co, Ni , Fe and Cu rich compositions d_{metal}

Application in Smart phone using MI sensor with microw LG-optimus 3D LG-optimus ONE 8 Goog All models are manufacturing. 네네 오전 9 1010 al CE 12:38 P Amount $4x10^{6}$ /month MI elements 10451.00 05 52

LG-optimus Pad (Tablet PC)

LG-optimus chat

ŵ 5 a

LG-VS660

LG-LU3100

SHARP

LG-MS690

Garmin-ASUS

Internal stresses in composite microwires

σ (MPa)

×

$$\sigma_{\phi} = \sigma_{r} = P = \varepsilon E k \Delta / (k/3+1) \Delta + 4/3 \quad (1);$$

$$\sigma_{z} = P(k+1) \Delta + 2/(k\Delta + 1) \approx 3\sigma_{r} \quad (2)$$

where σ_{ϕ} , σ_{r} and σ_{z} - stresses, E_{m} , E_{g} -Young modulus $\Delta = (1-\rho^{2})/\rho^{2}$, k $=E_{g}/E_{m}$, $\varepsilon = (\alpha_{m}-\alpha_{g})(T_{m}-T_{room})$, α_{1} , α_{2} - thermal expansion coefficients and T_{m} , T_{room} - melting temperatures

Stress appears at simultaneous solidification of metallic alloy inside the glass coating

H. Chiriac, T.-A. Ovari, A. Zhukov, J. Magn. Magn. Mater. 254–255 (2003) 469–471

MAGNETIZATION PROCESSES IN Fe-RICH THIN MAGNETIC WIRES.

Measurements technique

modified set-up for DW propagation studies

Differences:

1- single layered wounding of magnetizing solenoid with reduced number of turns for reduction of time of transient process to avoid the situation when the DW can start propagating while *H* is still growing
2- Use three pick-up coils set to detect M. Ipatov, V. Zhukova, A. K. possible multible DW nucleation Zvezdin and A. Zhukov, J. Appl. Phys. **,106**, 103902, 2009

Effect of magnetoelastic energy

 $K_{me} \approx 3/2 \lambda_s \sigma_i$, : λ_s -determines by the chemical composition $\sigma = \sigma_{i+} \sigma_a$ $\sigma_{a'}$ - applied stresses σ_i -determines by the ratio $\rho = d/D$

Sources:

 H. Chiriac, T. A. Ovari, and Gh. Pop, 1995 *Phys. Rev. B*, **52** 10104.
 J. Velázquez, M. Vazquez and A. Zhukov, J. Mater. Res. V.11 No10 (1996) 2499-2505

Source:

JAPAN. J. APPL. PHYS. VOL. 15 (1976), No. 4

Magnetostriction of Fe-Co Amorphous Alloys

Hiroyasu FUJIMORI, Ken Ichi ARAI[†], Hisanori SHIRAE, Hideo SAITO, Tsuyoshi MASUMOTO and Noboru TSUYA[†]

Effect of magnetelastic anisotropy

Hysteresis loops of Fe-rich microwires with different metallic nucleus diameter d and total diameters D:

Fe₇₀B₁₅Si₁₀C₅ microwires with $\rho = 0.63$, d=15 µm (a); $\rho = 0.48$ d= 10,8 µm (b); ρ =0.26, d= 6 µm (c); $\rho = 0.16$, d= 3 µm (d) and of Fe_{72.75}Co_{2.25}B₁₅Si₁₀ microwire with $\rho = 0.14$, d≈ 1.4 µm D≈ 10 µm (f).

Effect of magnetolastic anisitropy on DW propagation

Effect of magnetolastic anisitropy on DW propagation

1600 0 MPa 112,5 MPa 168,75 MPa 1400 225 MPa 281,25 MPa 1200 337,5 MPa v (m/s) 1000 800 600 800 1000 1200 1400 1600 600 H(A/m)

v(H) dependences for $Co_{41.7}Fe_{36.4}Si_{10.1}B_{11.8}$ 3 microwires (d \approx 13,6µm, D \approx 24,6µm, $\rho\approx$ 0,55) measured under application of applied stresses, σ_a .

 $\lambda_s \approx 20 \mathrm{x} 10^{\text{-}6}$

v(H) dependences for $Fe_{16}Co_{60}Si_{11}B_{13}$ microwires (d \approx 12µm, D \approx 29µm, p \approx 0,41) measured under application of applied stresses, σ_{app} .

 $\lambda_{\rm s} \approx 40 {\rm x} 10^{-6}$

Effect of magnetolastic anisitropy on DW propagation

 $\lambda_{\rm s} \approx 10^{-7}$ $v = S(H-H_0)$, where S is the DW mobility, H is the axial magnetic field and H_0 is the critical propagation field.

The domain wall mobility, *S*, is given by: $S=2\mu_0 M_s/\beta$ This damping is related to the Gilbert damping parameter, α and is inversely proportional to the domain wall width δ_w , $\beta_r \approx \alpha M_s / \gamma \delta_w \approx M_s (K_{me}/A)^{1/2}$

v(H) dependences for $Co_{56}Fe_8Ni_{10}Si_{11}B_{16}$ microwires measured under application of applied stresses, σ_{app} .

Magnetoelastic energy, K_{me} , is given by $K_{me} \approx 3/2 \lambda_s \sigma$, V(H) is affected by K_n

M. Ipatov,N. Usov, A. Zhukov et al.. "Local nucleation fields of Fe-rich microwires and their dependence on applied stresses" Phys. B. 403, 379-381, 2008.

Modified method (3 pick-up coils)

On non-linearity of v(H) dependence

 $v=S(H-H_0)$ where S is the DW mobility, H is the axial magnetic field and H_0 is the critical propagation field.

(J. Appl. Phys., 106 (2009) 103902,)

Role of Defects

Typical v(H) dependences measured in different samples of magnetically bistable amorphous $Fe_{74}B_{13}Si_{11}C_2$ microwires exhibiting (a) **uniform** and (b) **accelerated** DW propagation.

nucleation fields measured in the same $Fe_{74}B_{13}Si_{11}C_2$ microwires for (a) uniform and (b) accelerated domain wall propagation. 1, 2 and 3 are the position of the pick-up coils.

Role of Defects

Correlation of local nucleation fields distribution (a) and V(H)dependences in magnetically bistable amorphous Fe₇₄B₁₃Si₁₁C₂ microwire exhibiting accelerated domain wall propagation, 1, 2, 3 are the positions of the pick-up coils

Conclusions

- DW propagation in μ wires is quite fast (few km/s).
- We observed correlation of DW dynamics with magnetoelastic energy.
- Quite fast DW propagation (v till 2500 m/s at H about 30 A/m) has been observed in low magnetostrictive $Co_{56}Fe_8Ni_{10}Si_{11}B_{16}$ microwires.
- Applied and internal stresses result in decreasing of DW velocity.We assume that in order to achieve higher DW propagation velocity at the same magnetic field and enhanced DW mobility special attention should be paid to decreasing of magnetoelastic energy.
- At elevated magnetic field the role of defect is quite impotant: a new domain can be spontaneously nucleated in front of the propagating head-to-head domain wall.

